
1

Distilling Router Data Analysis for Faster and
Simpler Dynamic IP Lookup Algorithms

Filippo Geraci, Roberto Grossi

Abstract— We consider the problem of fast IP address
lookup in the forwarding engines of Internet routers. Many
hardware and software solutions available in the literature
solve a more general problem on strings, the longest
prefix match. These solutions are then specialized on real
IPv4/IPv6 addresses to work well on the specific IP lookup
problem. We propose to go the other way around. We first
analyze over 2400 public snapshots of routing tables col-
lected over five years, discovering what we call themiddle-
class effect of those routes. We then exploit this effect for
tailoring a simple solution to the IP lookup scheme, taking
advantage of the skewed distribution of Internet addresses
in routing tables. Our algorithmic solution is easy to
implement in hardware or software as it is tantamount
to performing an indirect memory access. Its performance
can be bounded tightly in the worst case and has very
low memory dependence (e.g., just one memory access
to off-chip memory in the hardware implementation). It
can quickly handle route announcements and withdrawals
on the fly, with a small cost which scales well with the
number of routes. Concurrent access is permitted during
these updates. Our ideas may be helpful for attaining state-
of-art link speed and may contribute to setting up a general
framework for designing lookup methods by data analysis.

Index Terms— System design, IP lookup algorithms,
data analysis, forwarding engines, routing tables.

I. I NTRODUCTION

The IP lookup problem is a recurrent problem in
the literature for packet forwarding in the Internet [1].
Routers have to forward lots of packets from input
interfaces to output interfaces (next hops) based on
packet’s destination Internet address, called anIP ad-
dress. Forwarding a packet requires an IP addresslookup
at the routing table1 to select the next hop corresponding

Istituto di Informatica e Telematica, CNR – Con-
siglio Nazionale delle Ricerche, 56100 Pisa, Italy
(filippo.geraci@iit.cnr.it). Part of this work was
supported by the Italian CNR.

Dipartimento di Informatica, Università di Pisa, 56125 Pisa, Italy
(grossi@di.unipi.it). Work supported in part by the Italian
Ministry of Research and Education (MIUR).

1We will use the term “routing table” to denote what is more
properly called a “forwarding table.” An actual routing table contains
some additional information.

to the packet. As routers have to deal with links whose
speed constantly improves, the address lookup is consid-
ered one of the major bottlenecks in high performance
forwarding engines [1], [2]. Other bottlenecks, such as
those involved by fair queueing policy and IP switching
technology, are well understood and handled [3].

The IP address lookup problem was just considered
a simple table lookup problem at the beginning of
Internet. In the early 1990s, people realized that rout-
ing information would grow enormously and introduced
classless inter-domain routing (CIDR) for reducing space
by dividing networks into prefixes [4]. In IPv4 [5] the
prefixes are binary strings of variable length using the
syntaxX.Y.W.Z/L to represent the firstL bits of the
4-byte wordX.Y.W.Z, where8 ≤ L ≤ 32. Prefixes can
be up to 128 bits in IPv6 [6] (but then have a different
syntax). More realistically, we can assume prefix lengths
up to 64 bits in IPv6 global unicast addressing [7], since
the first 64 bits are crucial for backbone routing while the
last 64 bits are for subnet routing, e.g. MAC addresses.

The use of prefixes increases the complexity of the
IP address lookup problem. For each packet, more than
one prefix in the routing table can match the packet’s
IP address. In this case, the adopted rule is to take the
longest matching prefix. Given prefixesp1, p2, . . . , pn,
for any binary stringx we want to identify the longestpi

that equals the first bits ofx, where 1 ≤ i ≤ n.
For example, let’s consider the prefixes in Table I.
Both prefixes 192.168.0.0/17 and 192.168.0.0/18 match
the IP address 192.168.128.125; hence, the packet is
forwarded to next hop3. We will only consider situations
arising with single hops, since dealing with multihops is
very similar. No-route-to-host is the special next hop 0
associated with the empty prefixε.

Looking for the longest matching prefix in tables of
high-performance routers is a challenging problem. For
networks with a link speed of 10 gigabits per second
(OC-192), they need to forward up to 33 million packets
per second, assuming that each packet is 40 bytes long. A
general solution to the longest prefix matching problem
(LPM) is not the best choice, since it also has to deal
with extreme situations that do not occur in real routing

2

tables. Thus, the resulting algorithms are more involved
than a simple table lookup. The IP lookup problem is
more peculiar than LPM, because the prefixes stored in
the routing tables are not random strings. In this paper
we stress the importance of data analysis on real routing
tables before designing IP lookup algorithms. (We do
not consider real traffic analysis due to the difficulty in
obtaining public databases for privacy reasons.)

The results in previous work mentioned in Section VI
describe the IP address lookup problem in the general
terms of LPM. They first discuss how to solve its general
form efficiently; then they present experiments to tune
the performance of the proposed solutions when applied
to the specific IP address lookup problem on real routing
tables. Again, we follow the opposite direction in hopes
of gaining more insight into the problem. We begin with
the experimental analysis performed on public databases
of nearly 2400 snapshots of routing tables collected over
five years. We identify some new parameters charac-
terizing the (skewed) distribution of prefixes in routing
tables. Based upon our findings, we provide a new and
simple solution to the IP address lookup problem that
circumvents several difficulties posed by the generality
of LPM.

Our starting point is the preliminary result based on
full expansion and compression of routing tables by
Crescenzi, Dardini and Grossi [8]. (It was later referred
to as CDG in [9].) To our knowledge CDG is the first to
describe a lookup scheme whose design is fully driven by
data analysis. A frequently cited survey [1] published in
2001 shows that CDG is almost an order of magnitude
faster than its state-of-the-art competitors at that time
(see Table 3 in [1]). Even in the worst case, the frequency
of lookups with small response time is impressively high
and does not depend on the traffic through the router (see
Fig. 22 in [1]).

Unfortunately, CDG has some drawbacks. The survey
reports that “Schemes using multibit tries and compres-
sion give very fast search times. However compression
and the leaf pushing technique used do not allow in-
cremental updates. Rebuilding the whole structure is the
only solution.” Moreover, some authors [9], [10], [11]
pointed out some cases in which the space requirement

prefix hop prefix hop
65.10.10.0/24 1 192.168.64.0/18 2
192.168.0.0/17 2 192.168.0.0/32 4
192.168.0.0/18 3 192.168.0.0/29 5

TABLE I

of CDG is too high, possibly causing its performance to
suffer in the worst case.

In this paper we present a lookup scheme that exploits
the original idea of CDG in a novel and even simpler
way. We bring to light further properties that allow us to
avoid its drawbacks. The main discovery is what we call
themiddle-class effectin real routing tables: even though
the majority of prefixes have lengths ranging from 16
to 24, they tend to follow regular patterns. In other
words, we have a good chance to store the mapping from
all the 232 IP addresses to the next hops into a compact
table, so that lookup and update are able to access the
table very quickly using indirection. Some of the basic
properties that we distill have been implicitly used in
some of the previous work to optimize the performance
of the proposed solutions. We go the other way around,
and design our method using solid data analysis.

The main contributions of our paper on exploring the
data analysis can be summarized as follows. First, we
save space significantly over CDG since we have a much
more stable space occupancy that scales linearly with the
table size (e.g., see Fig. 5). We no longer need the run-
length encoding (RLE) adopted in CDG, because we or-
ganize suitably the prefixes. Second, we improve lookup
time by nearly 30% (e.g., see Fig. 7). Third, we can
dynamize the table, performing updates quickly without
rebuilding the whole structure as previously required.
Concurrent access is also permitted while updating.

We think that these contributions are due to the
simplicity of our scheme (see Fig.4), whose efficiency
is validated by our data analysis. Not only do we reduce
space occupancy and make it linearly scalable with the
size of routing tables, we also improve lookup time
and obtain a fast and scalable update algorithm for
supporting announcements and withdrawals. Our update
algorithm is robust since we can efficiently bound the
worst case, which is important for unauthenticated an-
nouncements [12].

Our solution is algorithmic in nature and can be im-
plemented in hardware or software. Available solutions
assume processors that make use of fast static random
access memories (SRAMs) or ternary content address-
able memories (TCAMs). We can use both technologies
in our lookup scheme, and refer the reader to [2] for
a recent discussion on their advantages and drawbacks.
We also attain high throughput by running our lookup
scheme on a standard PC. We believe that performance
will greatly improve by integrating our scheme to exploit
the aforementioned technologies to obtain an embedded
system for forwarding packets.

Space is not the main issue; more space-efficient

3

solutions for lookup tables can be found in the literature,
but they either have slower access or are difficult to
update. Our space occupancy fits current technology,
as it requires 1–2Mb of fast memory. We also assert
preliminary performance for IPv6 routing tables. Our
findings on data analysis can be exploited with other IP
lookup methods to improve their performance. Indeed,
some of them make implicit use of the data distribution
in routing tables. Clearly, our scheme can also be used
to solve the general problem of the longest prefix match.
However, we do not claim that its performance is as good
as in the case of the specific IP lookup problem.

The paper is organized as follows. We illustrate our
approach by taking a glimpse into our data analysis
in Section II. We show how to perform lookups in
Section III and updates with announcements and with-
drawals in Section IV. We describe the construction of
our lookup table in Section V. We conclude with a
reference to state-of-the-art methods in Section VI.

II. DATA ANALYSIS OF ROUTING TABLES

In this section, we describe our data analysis on
routing tables to highlight a useful property of middle-
class prefixes (whose length ranges from 16 to 24). We
call it the middle-class effect. It allows us to reduce
both space occupancy and lookup time while efficiently
dynamizing the lookup table. While we do not claim
to be the first to have exploited this effect, our study
explicitly stresses its importance in designing IP lookup
tables. We first describe the large data set that we
employed from public databases of routing tables for
IPv4 in Section II-A. We illustrate the middle-class effect
in Section II-B, showing how to exploit it for a two-
layer organization in Section II-C. Based on the latter,
we describe an implementation of IP lookup tables in
Section II-D. We suggest how to scale it to IPv6 in
Section II-E.

A. Databases and experimental platforms

We base our analysis on an extensive data set of
more than 2400 snapshots of routing tables available

router #snapshots from to

aads 538 10-01-00 05-15-02
mae-east 230 10-01-00 06-01-01
mae-west 618 10-01-99 04-12-02
paix 78 10-01-01 03-10-02
pacbell 576 12-09-98 05-15-02
ripe-ncc 365 01-01-03 12-01-03
ripe-ncc 19 10-10-99 04-01-04

TABLE II

 0.01

 0.1

 1

 10

 100

 0 50 100 150 200 250 300 350

Annuoncements
Withdrawals

Fig. 1. Millions of daily announcements (top) and of daily
withdrawals (bottom) for RIPE NCC, in logarithmic scale on the
y-axis. The x-axis reports the 365 days in year 2003.

from public databases, collected over a period ranging
from 1998 to 2004. The major source is located at
ftp.merit.edu/ipma/routing_table , the In-
ternet Performance Measurement and Analysis (IPMA)
project (currently dismissed). We also collected all
daily data for year 2003, plus some monthly snapshots,
from data.ris.ripe.net , the Network Coordina-
tion Centre of the Ŕeseaux IP Euroṕeens (RIPE NCC),
router of Amsterdam. We report the figures in Table II.

Some authors singled out individual snapshots that
cause the worst-case behavior of CDG in terms of space
occupancy; hence, they are good benchmarks for our
method as well. Most of these tables have been employed
in the experiments [9], [13]. The remaining ones were
sent to us [10]. We list them in Table III.

As for the updates, we collectedall the announce-
ments and withdrawals available for the entire year 2003
on RIPE NCC. In Fig.1, we plot their number in millions
(on the y-axis) on a daily basis (on the x-axis). As we can
see, the number of withdrawals is an order of magnitude
smaller than the number of announcements. On the
average, there is approximately one announcement per
second; clearly, they arrive in bursts. For example, note

router date router date

aads 05-30-01 oregon-03 07-10-03
att 07-10-03 pacbell 05-30-03
east.attcanada 07-10-03 paix 05-30-01
funet 10-30-97 telstra 03-31-01
mae-west 05-30-01 telus 07-10-03
oregon-01 03-31-01 west.attcanada 07-10-03

TABLE III

4

the peak of more than 20 million updates on Oct 25–
26, 2003. We will use this particular peak for intense
benchmarking in Section IV.

As for the lookups, we could not find publicly avail-
able traffic traces (for privacy resasons). We instead
use random data from previous work [9], as well as
synthetic data. We obtain the latter by extending the
approach in [14] to generate traffic data according to the
distribution of the prefixes of any given routing tableT .

To begin with, letS be a stack whose positions are
numbered2, 3, . . ., starting from the top. When we push
an item intoS, the item gets position2 and the remaining
ones are shifted to positions3, 4, etc. When we extract
an item at positioni from S, we shift items in positions
i + 1, i + 2 . . . so that they occupy positionsi, i + 1, etc.

We generate traffic data using tableT , stackS, and a
conditional probability0 < p < 1 (we setp = 0.9 in our
experiments). The first IP address is chosen uniformly at
random and is pushed into an emptyS. We then generate
the remaining IP addresses one by one according the
following steps:

1) We choose a nonempty item from the stackS, such
that the item in positionj is picked with probability2−j ,
for j = 2, 3, . . .; if we succeed, we output that item. (This
happens with probability nearly1/2 for a sufficiently
large stack.)

2) If no item is chosen in step 1 (again, occurring with
probability nearly1/2), we toss a biased coin (heads with
probabilityp and tails with probability1−p) and consult
the following:

2.a—Heads: choose a prefix fromT , uniformly at
random, pad it with random bits to obtain a length of
32 bits, and output it.

2.b—Tails: output a random IP address uniformly at
random.

In all cases, we push the output address onto the top
of the stackS, and we extract its copy (if any) fromS.

For our experiments we employed two platforms. The
first is based on an AMD Athlon XP 1900+ (1.6GHz),
256Mb RAM DDR at 133Mhz, 256Kb L2 cache, 128Kb
L1 cache (64 Kb data and 64Kb instructions) running
Linux kernel 2.4.22. The second is an Intel Pentium 4
(2Ghz), 512Mb RAM DDR at 133Mhz, 512Kb L2 cache.
We plan to extend the experimentation to more plat-
forms (e.g., those based on the PowerPC). We used
gettimeofday for timings. Since the results are sim-
ilar, we will report only experimental data for the first
platform.

 1

 10

 100

 1000

 0 10000 20000 30000 40000 50000 60000

Fig. 2. The number of middle-class prefixes of RIPE NCC is shown
on on the y-axis (log scale). The x-axis reports the216 intervals of the
address space, each interval associated with a distinct configuration
of the first 16 bits in the addressing. Each vertical bar counts how
many prefixes fall within the corresponding interval.

B. Distilling the middle-class effect in routing tables

In order to illustrate our ideas, let’s consider any
routing tableT . We then choose the snapshot of the
RIPE NCC router taken on April 1st, 2004, containing
138201 prefixes. Note that analogous properties also
hold for the router snapshots in the data set described
in Section II-A. What is widely known is the skewed
distribution of prefixes from length 1 to 32 inT . Indeed,
98% of the prefix lengths are in the interval[16 . . . 24],
which we call middle-class prefixes. We therefore focus
on these prefixes, looking for more insight on their
distribution.

We take the address space[0 . . . 232 − 1] partitioned
into equal intervals of size216, each interval correspond-
ing to a distinct configuration of the first 16 address
bits. For each interval, we count how many middle-class
prefixes ofT have their first 16 bits corresponding to that
interval. Fig.2 shows the resulting frequency of prefixes
in these intervals. We obtain a skewed distribution, and
this skew is typically a good sign for compressing data
(whereas a uniform distribution is bad in this sense).

However, we can get further insight by examining the
trie storing all the prefixes inT (see [15] for a definition
of tries). The nodes of the tries are labelled with the next
hops according to prefixes inT . Some nodesu are also
marked to record the fact that the path from the root tou
stores a prefix of the table.

We can draw two cutlines on the trie, at levels 16
and 24. We obtain a set of at most216 sub-tries of height
no more thanh = 8. (We recall that the height is the
numbering of levels in a trie, starting from0 for the root.)

5

In order to analyze their common properties, we need
to recall some terminology. Two tries areisomorphic
if they have the same shape, the same labels, and the
same marks on the nodes. Formally, two nodesu and
v are isomorphic (u ∼ v) if they are both null, or
the following conditions hold:label(u) = label(v),
mark(u) = mark(v), left(u) ∼ left(v), andright(u) ∼
right(v). Hence, two tries are isomorphic if and only if
their rootsu and v satisfy u ∼ v. Note that we exploit
this property in Section IV for keeping an auxiliary data
structure for processing announcements and withdrawals.

For random data, we do not expect to find isomorphic
sub-tries. There are at least2300 sub-tries of height at
most 8, since the numberbh of binary trees of height
h > 0 is the solution to recurrencebh = b2

h−1
+bh−1(1+

√

4bh−1 − 3) as shown in [16], from which we can
computebh > 2300 for h = 8. If we account for the
fact that our sub-tries have nodes labeled, the number is
even larger. Hence the probability that two sub-tries are
isomorphic,p < 1/2300, is very near to zero. We can
have 216 such sub-tries for a routing table. Hence the
probability thatno two sub-tries are isomorphic is very
near to one, i.e.,(1 − p)2

16

≈ 1.
For IP lookups, we instead consider a weaker notion

which is more relevant in our case. Given a trie of
heighth, let’s expand it to its complete form (also called
prefix expansion) so that all the leaves are on the same
level. Nodes are still labeled and marked according to the
prefixes inT , except that they are now part of a complete
trie (which explictly represent all possible2h binary
strings of lengthh). Note that each string is associated
with its correct next hop when seen as part of an IP
address.

We say that two tries of heighth are equivalent, if
the sequence of next hops in the leaves of the former
is identical to that of the latter, when scanned in left-
to-right order. In other words, when a lookup withh
bits is performed on two equivalent tries, the next hops
thus returned make them indistinguishable. Note that two
isomorphic tries are equivalent while the reverse is not
necessarily true, since different combinations of shapes
and labels/marks can yield the same sequence of next
hops.

We are therefore interested in selecting one represen-
tative for each class of equivalent tries. In our case,
we apply this selection to sub-tries of height at most 8
obtained from the cutlines on levels 16 and 24 (corre-
sponding to the middle-class prefixes). How many of
them are equivalent? For random data, we expect that
there are no equivalent sub-tries as the probability of
finding two equivalent sub-tries is negligible. We can

extend the above argument for isomorphic sub-tries to
random sequences made up of 256 next hops.

Fortunately, we observe what we call themiddle-class
effectin real routing tablesT when we build the trie on
the prefixes inT :

Many sub-tries of height≤ 8 on level16 are
equivalent with lots of repetitions, and they
store the great majority of prefixes inT .

So there is a good chance to store fewer than216

sub-tries by keeping just one representative for each
equivalence class. Even though the majority of prefixes
are middle-class (98% in ourT), they do follow regular
patterns in the routing table.

This fact is reinforced by observing that the empirical
probability of finding that two consecutive sub-tries
are equivalent is high, when scanning the sub-tries on
level 16 in left-to-right order. For example in our tableT ,
there are 13834 nonempty sub-tries of height at most 8
on level 16. We obtain just 5954 of them after removing
a sub-trie if it is equivalent to its predecessor in a
left-to-right scan (as we do during table construction).
Among these, we are left with 3241 representatives of
equivalence classes. These are not random data at all!

C. Two-layer approach

Following what claimed in the middle-class effect, we
can transform the trie built on prefixes inT . We illustrate
our approach by referring toT (shown in Table I). We
first select only the prefixes of length up to 24 bits and
the first 24 bits of longer prefixes, associating the dummy
next hop with them. (We use the value of 255 in our
experiments.) They form what we calllayer 1. The set of
remaining prefixes (with more than 24 bits) is augmented
by taking their first 24 bits and associating with them
the suitable next hop inherited from layer 1. All of these
prefixes formlayer 2. Table IV shows an example. Note
that “dummy” prefixes of length 24 in layer 1 correspond
to prefixes of length 24 with the correct next hop in
layer 2. The number of such dummy prefixes cannot be
larger than the number of prefixes longer than 24.

We then build a trie on the prefixes on layer 1 alone

layer 1 layer 2
65.10.10.0/24 1 192.168.0.0/24 3
192.168.0.0/17 2 192.168.0.0/32 4
192.168.0.0/18 3 192.168.0.0/29 5
192.168.64.0/18 2
192.168.0.0/24 255

TABLE IV

6

24

16

Fig. 3. Left: a trie for the prefixes inT . Right: the corresponding
DAG in which the equivalent sub-tries of height at most 8 on level 16
are collapsed for the prefixes in layer 1.

and collapse equivalent sub-tries of height at most 8 on
level 16, so as to form a direct acyclic graph (DAG),
shown in Fig. 3. This graph gives a sufficiently good
compression of the information stored in a routing table.
As we shall see, the prefixes in layer 2 are small in
number with respect to those in layer 1.

D. Lookup tables exploiting the middle-class effect

We now describe a simple, but powerful, lookup
scheme based on the middle-class effect described in
Section II-B and on the two-layer organization proposed
in Section II-C.

Given our routing tableT , we build two lookup tables
for its prefixes. The first table stores the prefixes of
layer 1 while the second table stores the prefixes of
layer 2 (see again Table IV). We model our lookup
scheme by these two layers. We begin by focusing on the
lookup table for layer 1. (The lookup table for layer 2
depends on the implementation chosen as we shall see.)

We expand the upper part of the DAG in Fig. 3 that
corresponds to the first 16 levels into a complete binary
trie with 216 leaves. The lower part of the DAG is a set
of sub-tries of height at most 8, as previously mentioned.
Using the definition of equivalence, we compute the
sequence of 256 next hops obtained by each such sub-
trie. We obtain a two-dimensional table for layer 1 as
follows.
hop: This is the two-dimensional array of̂α×256 next

hops, wherêα is the number of non-equivalent sub-tries
of height at most 8 on level 16 of the DAG, and each
such sub-trie is represented by its sequence of28 = 256
next hopswithout RLE compression;
row: This is the array of216 entries mapping the

first 16 bits of IP addresses to the suitable row ofhop.
(Equivalently, they represent the children pointers of
DAG nodes on level 16.)

For example, with reference to layer 1 in Table IV,
we obtain the lookup table shown in Fig. 4. Here, we

row

255 3 ... 3 ... 3 2 ... 2 0 ... 0

 0 0 ... 1 ... 0 0 ... 0 0 ... 0

 0 0 ... 0 ... 0 0 ... 0 0 ... 0

 0 1 ... 10...63 64...127 128..255

255.255

192.168

65.10

0.1
0.0

hop

Fig. 4. The arraysrow andhop for the prefixes in layer 1 shown
in Table IV. No-route-to-host is the empty prefix with next hop 0.

haveα̂ = 3 rows in hop. Put into simple words, for any
IPv4 addressx = x1.x2.x3.x4, the next hop obtained by
searching forx into the trie compactly represented by
the DAG is that stored inhop[row[x1.x2], x3]. So, an
IP lookup for x = 192.168.32.27 successfully stops at
layer 1 by returning the next hop3, which is located
at hop[row[192.168], 32]. Instead,x = 192.168.0.27
requires a lookup in layer 2, since it returns the dummy
value 255 stored inhop[row[192.168], 0].

Before discussing the experimental analysis on the
lookup in Section III, we first assess the space occupancy
of our scheme in the rest of this section.

Fact 1: Layer 1 occupieŝα × 256 + 216 · #pointer

bytes, whereα̂ ≤ 216 is the number of non-equivalent
sub-tries of height at most 8 on level 16, and#pointer ≥

(log2 α̂)/8 is the number of bytes encoding a pointer to
hop’s rows.

In the worst case,hop occupies no more than 16 Mb
androw needs 256 Kb (using 4-byte pointers) by Fact 1.
This is actually a pessimistic estimate, since we only
keep the sub-tries that arenot equivalent each other.
What we can experimentally observe is that our choice
for representing layer 1 (which was data-driven) pays
back in terms of space occupancy when compared to
CDG.

In order to have a fair comparison with our scheme,
we must add the space taken by the lookup table adopted
for layer 2. We report in Table V the figures for several
choices with router west.attcanada (see Section II-A),
where we compare several methods for storing the pre-
fixes in layer 2: CDG, array with binary search,k-way
search (withk = 8 andk = 2n wheren is the number
of prefixes), binary tries, and hybrid tries in which the
first three levels are indexed by individual bytes and the
next 8 levels (at most) are indexed by individual bits.
Indeed, a lookup in layer 2 surely matches at least the
first 24 bits by construction. Lookup times measure the
number of microseconds for running 100,000 lookups.

We computed similar tables for other snapshots, as it
turns out that hybrid tries are the best trade-off between
space and lookup time. Choosing hybrid tries for storing

7

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 50 100 150 200 250 300 350

CDG
Ours

Fig. 5. Space occupancy of our scheme vs CDG for RIPE NCC. The
x-axis reports the 365 daily snapshots of year 2003 and the y-axis
the occupied space in bytes.

prefixes in layer 2, we report in Table VI the space
improvement with respect to CDG for the 12 bench-
mark tables listed in Section II-A. As we can see, the
column corresponding to our scheme gives a quite stable
occupancy in space with respect to the routing table size
(#prefixes). This is better highlighted if we consider the
entire year 2003 of RIPE NCC, with the results for our
scheme being plotted on the bottom of Figure 5.

The net result for our scheme is a lookup table whose
space occupancy scales linearly with the number of pre-
fixes. (Clearly, layer 1 alone scales as well; moreover, its
maximum size is 16Mb.) Fig. 6 illustrates this behavior
for the available monthly snapshots of RIPE NNC, from
October 1999 to April 2004, with a number of prefixes
ranging from 65841 (yieldinĝα = 1404) to 138201
(yielding α̂ = 3241). As can be noted, layer 1 has a
size ranging in[9n . . . 14n] bytes for n prefixes. For
the sake of comparison, a straightforward storage of
these prefixes alone in a routing table would require6n
bytes. In particular, each prefix requires a 4-byte word
of memory; its prefix length and its next hop need one
byte each.

lookup Kb
time total layer 1 layer 2

CDG 7012 2022 1521 501
Binary Search 5221 1556 1521 35
K Partition 5274 1556 1521 35
N Partition 5211 1608 1521 87
Binary Trie 5758 1649 1521 128
Hybrid Trie 5297 1649 1521 128

TABLE V

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 60 70 80 90 100 110 120 130 140

Fig. 6. Space occupancy of our scheme scales linearly with table
size. The x-axis reports the number of prefixes and the y-axis the
number of kilobytes taken. Plotted points are bounded by the two
linear functionsf(n) = 9n andg(n) = 14n.

We also computed statistics for all daily snapshots of
2003 of RIPE NCC (see Section II-A). The total size of
our lookup table (using a hybrid trie for layer 2) is in
the range[7n . . . 16n], thus confirming the linearity of
space even in this case.

At this point, we may wonder whether a more so-
phisticated technique can better exploit the properties
of the DAG in Fig. 3. For example, we could consider
more cutlines and adaptive expansion of sub-tries [1].
While we do not claim this as a general rule, we believe
that further improvement of the space occupancy of
our scheme can significantly reduce the performance
of lookup and update operations. As it becomes clear
later, we want to easily update the data structure while
guaranteeing very fast lookup operations. Our scheme
is simple, very fast and keeps the space reasonable
(although not at a minimum). Simplicity and efficiency
are the major features of our approach. We give three

router #prefixes CDG (Kb) ours (Kb)

aads 32505 3706 1084
att 121711 2188 1822
east.attcanada 127561 16418 1661
funet 41328 666 540
mae-west 71319 4643 1290
oregon-01 118190 9897 1596
oregon-03 142883 9026 2164
pacbell 45184 3170 982
paix 17766 2745 875
telstra 104096 8896 1490
telus 126687 11390 1724
west.attcanada 127576 16749 1664

TABLE VI

8

illustrative scenarios for implementing it; more are pos-
sible by varying the lookup scheme adopted for layer 2.

The first implementation uses SRAM with a unipro-
cessor, which is also the basis for our experiments (since
it can be easily set up). We use hybrid tries for storing
the long prefixes in layer 2. The size of our scheme
for layer 1 is comparable to the current size of caches
(≈ 1–2Mb) according to our experiments. A random
lookup accesses the table for layer 1 with a nearly
99.8% hit ratio, so that branch prediction works well for
testing if lookup must go on querying layer 2. We report
experimental data on this implementation in Section III.

The second implementation uses a bi-processor. One
processor’s cache holds layer 1 (the master), while
the other processor’s cache holds the hybrid trie for
layer 2 (the slave). Lookups are in parallel but the slave
processor can be interrupted when the master processor
succeeds (which happens in the majority of cases).

The third implementation is challenging as it is purely
hardware with a minimal requirement for logic. We store
row into on-chip SRAM andhop into off-chip SRAM.
We can preallocate the maximum size of both by Fact 1.
We suggest using TCAM for layer 2, typically storing a
few long prefixes (less than 15% in our data set). The
expected size of the TCAM can be easily computed by
performing statistics on the table prefixes longer than or
equal to 24 bits. Again lookup is in parallel and can
be implemented with negligible extra logic to select the
output from TCAMs when the next hop in layer 1 is a
dummy hop (255 with our data). We achieve one address
lookup per clock cycle in this way.

E. Scaling to IPv6

Our solution has good chances to scale to IPv6
addressing. Although there is not so much available
data, some downloadable routing tables are published in
http://net-stats.ipv6.cselt.it/bgp . Here
the relevant address type is global unicast. The first 64
bits are the most important ones for backbone routing,
as the remaining 64 bits are for specifying an interface
(e.g. a MAC address) where routing is mainly an intranet
task. We also observe here the middle-class effect on
a different scale. For our table, we have two cutlines
at 24 and 48 bits andno prefixes are shorter than 24.
We can blend our scheme and CDG by introducing a
new arraycol and reducing the number of columns in
hop with RLE in layer 1. Prefixes longer than 48 are
stored in layer 2. For an address lookup, we hash the
first 24 bits to a suitable entry ofrow and the next 24
bits to a suitable entry ofcol, which points tohop. If
the returned hop is a dummy, we perform the lookup in

layer 2 as before. Ultimately we just increase the number
of memory accesses to 3 and require the computation
of two hash functions. As a result, we expect that our
method is competitive for IPv6 address lookup also, but
we need more data to assess this rigorously.

III. PERFORMINGLOOKUPS

The improved space bounds described in Section II
makes our scheme more stable to use with respect
to CDG. What about lookup time in IPv4? We recall
that CDG requires 3 accesses in the worst case. We
significantly improve this performance. We require just
two accesses plus an access to layer 2, the latter with
very low hit ratio (as we show next). As a result, our
method is approximately 30% faster than CDG.

As previously mentioned, the lookup scheme is simple
and requires trivial logic to be implemented in hardware.
Assume that, for any given IP addressx = x1.x2.x3.x4,
we have the variablelx = x1.x2 storing the first 16 bits
of x and rx = x3.x4 storing the last 16 bits, so that
x = lx.rx. We use the right shift operator onrx to get
byte x3 and to perform a lookup. If we get the dummy
value 255 in layer 1, we also need to perform a lookup
in layer 2.

#define DUMMY 255
if ((h1 = hop[row[lx], rx>>8]) != DUMMY)

return h1;
return lookup_layer2(lx.rx);

We measure the running time of our method and of
CDG on the daily snapshots of RIPE NCC for the year
2003. We employ the synthetic traffic data for each
individual snapshot as explained in Section II-A. As
it can be noted in Fig. 7, our lookups are definitively
faster than those in CDG by 30%. This is consistent with
the fact that we reduce the number of memory accesses
from 3 to 2.

It turns out that the role played by the data structures
in layer 2 is rather limited in our data set, except for
the single case that we discuss next. We report the
experimental data in Table VII for the 12 benchmarks
described in Section II-A. We use both random and
synthetic data. For random data, the figures in italic
correspond to random data employed in the experiments
of [9], [13]. The columns hit-2 count how many hits our
lookup made in layer 2. The other columns measure the
running time in microseconds for 100,000 lookups.

We observe that the hit ratio for layer 2 is very low, so
branch prediction in the if-statement works by returning
the next hoph1 of layer 1. As a result, our scheme
essentially requires two memory accesses for a lookup.
Note that, contrary to the rest of the snapshots in our data

9

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 50 100 150 200 250 300 350

CDG tr
Our tr

Fig. 7. Number of microseconds (on the y-axis) required by 1 million
lookups in CDG (top) and in our scheme (bottom) using synthetic
traffic. The x-axis reports the 365 daily snapshots of RIPE NCC 2003.

set, oregon-01 performs badly with respect to our scheme
on the random data used in [9]. (On the other hand, it
performs equally well with random data generated by
us.) Here is a clear example showing that the choice
of a hybrid trie as lookup mechanism in layer 2 is
not enough powerful. Indeed, there are many prefixes
of length between 28–32 in oregon-01, and lookups in
layer 2 perform long matches, which is painful for trie
searching.

If we use CDG for layer 2, we can get an improve-
ment. This observation shows that the seemingly bad
performance of our lookup scheme on oregon-01 isnot
due to layer 1 (which is quite stable and compact), but
rather stems from layer 2. As we remarked before, in
all other snapshots we observed a limited impact on the
overall performance by the lookup method adopted in
layer 2. Nevertheless, this limited impact appears not to
be the case for the snapshot oregon-01.

A similar situation may occur if some malicious
routing uses addresses that access layer 2 very often. We
observe that the cache can adapt to this skewed access
nicely since the number of routes in layer 2 is limited
(see Section II-D) and most of the data structure for
layer 2 is resident in the cache. To alleviate this problem,
we exploit the fact that we definitively match the first 24
address bits in layer 2. We suggest using some a cache-
efficient trie for layer 2 (see [17] for example).

We note that we obtain good performance in all other
cases with just a hybrid trie on layer 2.

IV. PERFORMINGUPDATES

We now describe one of the main effects of our
simplification of the lookup scheme. We show how to

efficiently handle the updates of the lookup table when
announcements and withdrawals of routes arrives on the
fly. We do not need to rebuild the lookup table from
scratch. Instead, we combine the best features of fast
lookup using arrays with the flexibility of dynamically
linked data structures while avoiding their drawbacks
(rebuilding and slow lookup time, respectively).

We describe how to use our method (see Section II-
D) by assuming that some reasonably efficient method
has been adopted for layer 2 (e.g., tries, multi-level
hashing, TCAMs, etc.). Again, we base our method
on real data analysis to show that the great majority
of updates involves layer 1, consistent with what was
observed in the middle-class effect. We also make our
scheme more robust by providing a good, exact upper
bound on the number of entries changed in the lookup
table in the worst case.

As described in Section II-D, we employhop androw
for layer 1. It is crucial to observe thathop is stored in
row-major order. Since we adopt the maximum number
of columns, 256, the only admissible size change inhop

is to add or remove rows. Performing this change on
the columns would result in a disaster, as the whole
hop would need to be re-allocated dynamically, which
can have a cost analogous to that of rebuilding. Here
is why we opt for keeping all the 256 columns. We
observe experimentally that using RLE on runs of equal
next hops would reduce the number of columns by a
negligible value at the price of reconstruction. So in this
case, we prefer to have fast update and waste a bit of
space. This also guarantees a high level of concurrent
access to our lookup table during its lifetime.

We assume (realistically speaking) that the prefixes in
route announcements and withdrawals are of length at
least 8. (They can be shorter in case of heavy network

router random synthetic
CDG ours hit-2 CDG ours hit-2

RIPE NCC 10936 5922 1136 6970 4106 1074
aads 7276 5903 5463 7452 4775 4820
att 12605 7351 15 7872 4941 16
east.attcanada 15096 8429 3220 9164 5450 3116
funet 3130 2461 88 5036 2783 67
mae-west 7217 5916 2385 7425 4565 2401
oregon-01 7740 9933 11693 7265 6654 10651
oregon-03 14262 9529 3565 8790 6023 3525
pacbell 6126 5078 3899 6584 4233 3458
paix 6306 5522 9683 6934 4682 8703
telstra 8468 7544 3899 7966 5317 3690
telus 14011 8177 2095 8630 5279 2228
west.attcanada 15071 8353 3277 9167 5350 3050

TABLE VII

10

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 50 100 150 200 250 300 350

Fig. 8. On the y-axis, percentage of daily updates (less than 0.7%)
involving layer 2 for RIPE NCC. The x-axis reports the 365 daily
snapshots of year 2003.

failures, but then updating the routing table is a minor
problem.) We also assume that there are at most 127
distinct next hop values in layer 1. We reserve the most
significant bit in each entry ofhop to mark it as a
dummy. (Note that we do not use the dummy value
of 255 anymore as in Section II-D.) Masking this bit
yields the correct next hop value. If more than 127 values
are needed, we add 32 bytes at the end of each row
of hop to storing these mark bits. If more than 256 next
hops are needed, we simply allocate two bytes per entry
of row.

A. Further data analysis

We perform data analysis on the update traces for
RIPE NCC. We collect the huge number of all the
announcements and withdrawals available for year 2003
(see Section II-A). We report in Fig.8 the percentage of
daily updates involving layer 2. Note that the maximum
percentage is less then 0.7%, with almost all values
below 0.1%. This confirms once again the middle-class
effect that we observed on routing tables in Section II-B,
motivating our choice to build layer 1 on the first 24 bits.
Therefore, we suggest to use a well-tuned trie in layer 2,
as its update cost does not significantly influence the
overall performance of announcements and withdrawals
in a router.

B. Handling announcements and withdrawals

We show how to efficiently process announcements
and withdrawals that are produced during the execution
of the border gateway protocol (BGP). When an an-
nouncements arrives, we have to insert a certain prefixp
with its associated prefix lengthlp and next hophp, into

layer 1. Recall that8 ≤ lp ≤ 32 by our assumptions.
We distinguish among three main cases for describing
the worst-case effect of this insertion onrow and hop,
illustrating them by using the example of layer 1 in
Table IV and its associated arraysrow andhop shown in
Fig. 4. (We will discuss how to determine which entries
change in Section IV-D.)

1) Caselp < 16: Since lp ≥ 8, we have to change
no more than256 entries inrow. However, each of them
could change up to256 entries inhop. The worst case is
therefore that of changing256+216 entries. In practice,
the number of entries is much smaller. In our example,
if we announce routep = 192.0.0.0 with prefix length
lp = 8 and next hophp = 6, we change the entries
in row[192.0 . . . 192.255] exceptrow[192.168]. All of
them point to a new row inhop that is made up of all
6s. Note that we cannot create many such rows, as the
number of distinct hop values is limited (to 127 in our
case). In the row ofhop pointed to byrow[192.168], we
replace its right half of0s with 6s. This is a situation that
can be replicated over many rows, and that may cause
the worst-case behavior, which we can bound as above.

2) Case16 ≤ lp ≤ 24: This is the most frequent case
according to the middle-class effect. We can change one
entry of row to point from one row ofhop to another,
since the insertion ofp needs to change some entries
of the row previously pointed in that entry ofrow. We
may need to add a new row when none of the existing
ones match this change. In the worst case, we change no
more than1+256 entries. Continuing our example, if we
announce routep = 192.168.128, lp = 20, andhp = 7,
we modify the row ofhop pointed byrow[192.168],
so that the 16 entries starting from position128 change
from 6s to 7s. Note that we do not need to create a
new row as there is only one entry pointing. We should
therefore know how many entries inrow point a given
row of hop to this end.

3) Caselp > 24: We can change one entry inrow
and one inhop; however, the latter change may cause
the creation of a new row inhop as discussed in
case 2. Continuing our example, if we announce route
p = 192.168.128.12, lp = 26, and hp = 8, we just
have to change entry 128 in the row ofhop pointed by
row[192.168]. Its value changes from7 to 128 + 7 (we
set the most significant bit to 1 to mark it as a dummy),
and we must insertp, lp, hP into layer 2. Note that using
255 as a dummy value would also cause an insertion into
layer 2 of192.168.128.12/24 with next hop7. This is a
problem since we can change many entries in case 1, and
this change can reflect on layer 2 as well. Our solution
of using the most significant bit is simple since we do

11

not need to insert the first 24 bits of longer prefixes
into layer 2 as previously illustrated in Table IV. This
guarantees that an update falling into cases 1–2 does not
propagate to layer 2 as a side effect.

Since we adopt a different encoding for dummy val-
ues, we need to make a slight change to the lookup
procedure.

#define MSBIT 0x80
#define NO_ROUTE_TO_HOST 0
if (! ((h1 = hop[row[lx], rx>>8]) & MSBIT))

return h1;
if ((h2 = lookup_layer2(lx.rx)) != NO_ROUTE_TO_HOST)

return h2;
return h1 & ˜MSBIT;

If a lookup in layer 2 returns no-route-to-host, then we
must return the next hop value (with its most significant
bit cleaned) previously computed in layer 1. Although it
may appear that we are harming the performance of the
original lookup algorithm in Section III, we observe that
the hit ratio for the first if-statement is very high and
determines the real lookup cost, which stays unchanged
according to the experimental evaluation discussed in
Section III.

Withdrawals have an effect onrow and hop simi-
lar to announcements, except that we have to handle
“hidden” prefixes. When we delete a prefix, we should
find the “parent” of that prefix and propagate its next
hop downward to replace that of the deleted prefix. For
example, starting from Fig. 4, the withdrawal of route
192.168.0.0/18 from layer 1 in Table IV causes the
propagation of the next hop 2 (in place of 3), since it
associated with the shorter prefix192.168.0.0/17.

As a result we add or remove one row at most in
hop. Removed rows are linked in a free list that can be
reused for adding rows. This does not change the lookup
procedure and its cost.

Since the main cost is given by the number of entries
changed inrow and hop, we computed statistics to
account for this cost, classifying it according to cases 1–
3 (both for announcements and withdrawals).

We processed the peak of Oct. 25–26, 2003, in router
RIPE NCC. Table VIII shows that approximately 99.3%
of the updates fall into case 2. Roughly half of them
involve a prefix lengthlp = 24, so they change just one
entry in hop. Actually, the average number of changed
entries in row and hop is nearly 1. For case 1, the
most expensive one, the variance is high for a small
number of updates while the rest of updates does not
change any row ofhop. On Oct. 25, just 1495 updates
changed entriesrow and hop; on Oct. 26, there were
1889. These few updates changed between 100 and 1000
entries; we found a single example in which there were
20,985 changed entries, approaching the worst case.

The net result of the case analysis discussed so far
is that updates are of bounded cost in layer 1, even in
the worst case. This cost scales well with the number of
updates and prefixes stored in layer 1.

Fact 2: In the worst case, the announcement or with-
drawal of an IPv4 route changes at most 256 entries
in row and at most216 entries inhop in case 1. The
number of changed entries inhop becomes256 in
cases 2 and 3. In all cases, the empirical average number
of changed entries is nearly 1.

C. Concurrent access

We have seen that, although rare, an update may
change thousands of entries. Should we stop performing
lookups meanwhile? Fortunately it is not so, as concur-
rent access is possible. It suffices that when a row is
created inhop, the pointer inrow is changed. Then, the
row is correctly filled. In this way, any lookup accesses
an entry ofhop either before or after the update, but not
during it! Concurrent access is possible in limited form
also among updates, if they work on different rows of
hop. We can safely guarantee the lookup functionality of
our scheme while updating; so the cost of the update can
be spread among a sequence of lookups without freezing
the router for this reason (except for memory contention
due to simultaneous access).

D. Auxiliary data structures for dynamic lookup table

We need to identify which entries change in arrays
row and hop in order to handle announcements and
withdrawals. There are several possibilities for this. We
assume that the bookkeeping information is maintained
elsewhere (e.g., see [2]) and does not interfere with the
caching and prefetching of lookup data inrow andhop.
We propose one solution that seems reasonable to us. It
makes use of a counter for each row ofhop to count how
many entries ofrow point to it. It also uses a hashing
table for detecting equivalent sub-tries of height at most 8
on level 16, as they give rise to equal rows inhop. We
propose to use fingerprints as hash functions, as they
can be incrementally recomputed when only few entries
change in a row.

We also need auxiliary data structures for quickly lo-
cating “hidden” prefixes. For example, in Table IV, prefix

date #announce #withdraw case 1 case 2 case 3

10-25-04 20459780 139787 0.68% 99.31% 0.01%
10-26-04 11538757 144937 0.67% 99.30% 0.03%

TABLE VIII

12

192.168.0.0/17 is hidden by192.168.0.0/18
and 192.168.64.0/18 . However, if we with-
draw 192.168.0.0/18 , then we must activate
192.168.0.0/17 and propagate its next hop. Another
case occurs when two prefixes with the same next hop
are one prefix of the other. If the shorter is deleted,
then the longer emerges. We keep in a separate memory
the DAG in Fig. 3 with the notable difference that
isomorphic sub-tries are collapsed, instead of equivalent
ones. Indeed, equivalent sub-tries cannot differentiate
among the prefixes mentioned above, while isomorphic
ones can.

V. CONSTRUCTION OF THE LOOKUP TABLE

The construction of our table consists in building a trie
and then obtaining the DAG depicted in Fig. 3. It is worth
noting that we insert the prefixes (truncated at 24 bits)
into the trie in order ofnondecreasing prefix length. If we
do not follow this pattern, we have to propagate the next
hop of the currently inserted prefix downward. In other
words, we change the next hop to an already created
set of nodes. If we follow the above pattern instead, we
have to assign the next hop only to newly created nodes
and this can happen once per node. This pattern gives a
better performance in the worst case. For our tables, the
most time-consuming construction was for oregon-03, in
365 milliseconds. Note that, since we can quickly handle
updates, the construction time is less important than in
static lookup tables.

VI. RELATED WORK

Several approaches have been proposed in the last
few years for the IP lookup problem. The survey in [1]
describes the state of the art up to 2001, where CDG
is shown to be an order of magnitude faster than its
competitors. Since we improve over CDG, we claim that
our method has a good performance by transitivity. More
recent work is surveyed in [9] where recursive multibit
tries (retries) are presented,which can also be applied to
network clustering and telephone service marketing. We
can obtain an indirect comparison with the retrie. To our
knowledge, this is the most recent result that compares
favorably with CDG for the IP lookup problem. It attains
a variable improvement, which is mostly 30% as we do.
It is based on dynamic programming and appears not to
support quick updates. Other recent approaches are based
on Bloom filters [2], multiple hashing [18], stratified
trees [13], pipelined tries [11], [19], and biased skip
lists [20], just to name a few. Several of them support
updates and have small space requirements. It would be
interesting to make a comparison with these methods,

since our scheme does not require bit manipulation and
hashing and makes two plain memory accesses most of
the time.

REFERENCES

[1] M. A. Ruiz-Sanchez, E. W. Biersack, and W. Dabbous, “Survey
and taxonomy of IP address lookup algorithms,” inIEEE
Network, 2001, pp. 8–23.

[2] Sarang Dharmapurikar, Praveen Krishnamurthy, and David E.
Taylor, “Longest prefix matching using bloom filters,” inIEEE
INFOCOM, 2003, pp. 201–212.

[3] B. Lampson, V. Srinivasan, and G. Varghese, “IP lookups using
multiway and multicolumn search,”IEEE/ACM Transactions on
Networking, vol. 7, no. 3, pp. 324–334, June 1999.

[4] V. Fuller, T. Li, J. Yu, and K. Varadhan, “Classless inter-
domain routing (CIDR): an address assignment and aggregation
strategy,” RFC 1519, 1993.

[5] J. Postel, “Internet protocol,” RFC 791, 1981.
[6] S. Deering and R. Hinden, “Internet protocol, version 6 (IPv6),”

RFC 1883, 1995.
[7] Chuck Semeria, “Understanding IP address-

ing: Everything you ever wanted to know,”
http://www.bergen.org/ATC/Course/InfoTech/Coolip/.

[8] Pierluigi Crescenzi, Leandro Dardini, and Roberto Grossi, “IP
address lookup made fast and simple,” inProceedings of the 7th
Annual European Symposium on Algorithms, 1999, pp. 65–76.

[9] Adam L. Buchsbaum, Glenn S. Fowler, Balachannder Kirishna-
murthy, Kiem-Phong Vo, and Jia Wang, “Fast prefix matching
of bounded strings,”J. Exp. Algorithmics, vol. 8, pp. 1–3, 2003.

[10] L. Rizzo, “Personal communication,” 2003.
[11] Will Eatherton, George Varghese, and Zubin Dittia, “Tree

bitmap: hardware/software IP lookups with incremental up-
dates,” SIGCOMM Comput. Commun. Rev., vol. 34, no. 2, pp.
97–122, 2004.

[12] Geoffrey Goodell, William Aiello, Timothy Griffin, John Ioan-
nidis, Patrick McDaniel, and Aviel Rubin, “Working around
BGP: An incremental approach to improving security and
accuracy of interdomain routing,” inProceedings of Network
and Distributed System Security Symposium, San Diego, CA,
February 2003.

[13] Marco Pellegrini and Giordano Fusco, “Efficient IP table lookup
via adaptive stratified trees with selective reconstructions,” in
12th European Symposium on Algorithms, 2004, pp. 24–35.

[14] M. Aida and T. Abe, “Pseudo-address generation algorithm
of packet destinations for internet performance simulation,” in
IEEE INFOCOM, April 2001, pp. 1425–1433.

[15] Donald E. Knuth,Sorting and Searching, vol. 3 of The Art of
Computer Programming, Addison-Wesley, Reading, MA, USA,
second edition, 1998.

[16] A. V. Aho and N. J. A. Sloane, “Some doubly exponential
sequences,” Fibonacci Quarterly, pp. 429–437, November
1973.

[17] A. Acharya, H. Zhu, and K. Shen, “Adaptive algorithms for
cache-efficient trie search,” inALENEX, 1999.

[18] Michael Mitzenmacher and Andrei Broder, “Using multiple
hash functions to improve IP lookups,” inINFOCOM, 2001,
pp. 1454–1463.

[19] Anindya Basu and Girija Narlikar, “Fast incremental updates
for pipelined forwarding engines,” inINFOCOM, 2003.

[20] Funda Ergun, Suvo Mittra, Suleyman Cenk Sahinalp, Jonathan
Sharp, and Rakesh K. Sinha, “A dynamic lookup scheme for
bursty access patterns,” inINFOCOM, 2001, pp. 1444–1453.

