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Distilling Router Data Analysis for Faster and

Simpler Dynamic IP Lookup Algorithms
Filippo Geraci, Roberto Grossi

Abstract— We consider the problem of fast IP

address lookup in the forwarding engines of Internet

routers. Many hardware and software solutions avail-

able in the literature solve a more general problem on

strings, the longest prefix match. These solutions are

subsequently specialized on real IPv4/IPv6 addresses

to work well on the specific IP lookup problem.

We propose to go the other way around. We first

analyze over 2400 public snapshots of routing tables

collected over five years, discovering what we call

the middle-class effect of the routes. We then exploit

this effect for tailoring a simple solution to the

IP lookup scheme, taking advantage of the skewed

distribution of Internet addresses in routing tables.

Our algorithmic solution is easy to implement in

hardware or software as it is tantamount to perform-

ing an indirect memory access. Its performance can

be bounded tightly in the worst case and has very low

memory dependence (e.g., just one memory access to
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off-chip memory in the hardware implementation).

It can quickly handle route announcements and

withdrawals on the fly, with a small cost which scales

well with the number of routes. Concurrent access

is permitted during these updates. Our ideas may

be helpful for attaining state-of-art link speed and

may contribute to setting up a general framework

for designing lookup methods by data analysis.

Index Terms— System design, IP lookup algo-

rithms, data analysis, forwarding engines, routing

tables.

I. I NTRODUCTION

The IP lookup problem is a recurrent problem in

the literature for packet forwarding in Internet [1].

Routers have to forward lots of packets from input

interfaces to output interfaces (next hops) on the

ground of the packets’ destination Internet address,

called IP address. Forwarding a packet requires an

IP addresslookupat the routing table1 to select the

next hop corresponding to the packet. As routers

1We will use the term “routing table” to denote what is more

properly called “forwarding table.” A routing table contains

some additional information.
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have to deal with links whose speed constantly im-

proves, the address lookup is considered one of the

major bottlenecks in high performance forwarding

engines [1], [2]. Other bottlenecks, such as those

involved by fair queueing policy and IP switching

technology, are well understood and handled [3].

The IP address lookup problem was just con-

sidered a simple table lookup problem at the

beginning of Internet. In the early 1990s peo-

ple realized that routing information would grow

enormously, and introduced classless inter-domain

routing (CIDR) for reducing space by aggregating

networks into prefixes [4]. In IPv4 [5] the prefixes

are binary strings of variable length using the

syntaxX.Y.W.Z/L to represent the firstL bits of

the 4-byte wordX.Y.W.Z, where 8 ≤ L ≤ 32.

Prefixes can be up to 128 bits in IPv6 [6], with a

different syntax. More realistically we can assume

prefix lengths up to 64 in IPV6 global unicast

addressing [7], since the first 64 bits are crucial

for backbone routing while the last 64 bits are for

subnet routing, e.g., MAC addresses.

The use of prefixes increases the complexity of

the IP address lookup problem. For each packet,

more than one prefix in the routing table can match

the packet’s IP address. In this case, the adopted

rule is to take thelongest matching prefix. Given

prefixesp1, p2, . . . , pn, for any binary stringx we

want to identify the longestpi that equals the

first bits of x, where 1 ≤ i ≤ n. For example,

let’s consider the prefixes in Table I. Both pre-

fixes 192.168.0.0/17 and 192.168.0.0/18 match the

IP address 192.168.128.125; hence, the packet is

forwarded to next hop3. We will consider only

situations arising with single hops, since dealing

with multihops is very similar. No-route-to-host is

the special next hop 0 associated with the empty

prefix ε.

Looking for the longest matching prefix in tables

of high-performance routers is a challenging prob-

lem. For networks with link speed of 10 gigabits

per second (OC-192), they need to forward up to

33 millions of packets per second, assuming that

each packet is 40 bytes long. A general solution

to the longest prefix matching problem (LPM) is

not the best choice since it has also to deal with

all the extreme situations that do not occur in real

routing tables. The resulting algorithms are more

involved than a simple table lookup. The IP lookup

problem is more peculiar than LPM as the prefixes

stored in the routing tables are not random strings.

In this paper we stress the importance of data

analysis on real routing tablesbeforedesigning IP

lookup algorithms (we do not consider real traffic

analysis as it is difficult to obtain public databases

for privacy reasons).

The results in previous work mentioned in Sec-

tion VI describe the IP address lookup problem

in the general terms of LPM. They first discuss

how to solve its general form efficiently; then they

present experiments to tune the performance of

the proposed solutions to LPM when applied to

the specific IP address lookup problem on real

routing tables. We follow the opposite direction to
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have more insight into the problem. We start out

from the experimental analysis performed on public

databases of nearly 2400 snapshots of routing tables

collected over five years. We identify some new

parameters characterizing the (skewed) distribution

of prefixes in routing tables. Based upon our find-

ings, we provide a new and simple solution to the

IP address lookup problem that circumvents several

difficulties posed by the generality of LPM.

Our starting point is the preliminary result based

on full expansion and compression of routing tables

by Crescenzi, Dardini and Grossi [8], shortly named

CDG by a subsequent paper [9]. To our knowledge

CDG is the first to describe a lookup scheme

whose design is fully driven by data analysis. A

frequently cited survey [1] published in 2001 shows

that CDG is almost an order of magnitude faster

than its state-of-the-art competitors at that time (see

Table 3 in [1]). The frequency of lookups with small

response time in the worst case is impressively

high and does not depend on the traffic through

the router (see Fig. 22 in [1]).

Unfortunately CDG has some drawbacks. The

survey reports that “Schemes using multibit tries

prefix hop prefix hop

65.10.10.0/24 1 192.168.64.0/18 2

192.168.0.0/17 2 192.168.0.0/32 4

192.168.0.0/18 3 192.168.0.0/29 5

TABLE I

and compression give very fast search times. How-

ever compression and the leaf pushing technique

used do not allow incremental updates. Rebuilding

the whole structure is the only solution.” Moreover,

some authors [9], [10] pointed out that in some

cases the space requirement of CDG is too high

and this may worsen its performance.

In this paper we present a lookup scheme that

exploit the original idea of CDG in a novel and even

simpler way. We discovered further properties that

let us understand how to avoid its drawbacks. The

main one is what we call themiddle-class effect

in real routing tables: even though the majority

of prefixes have lengths ranging from 16 to 24,

they follow some regular patterns. So there is a

good chance to store the mapping from all the

232 IP addresses to the next hops into a compact

table, so that lookup and update are very fast in

accessing the table by indirection. Some of the

basic properties that we distill have been implicitly

used in some of the previous work to optimize

the performance of the proposed solutions. We go

the other way around, and start out from our data

analysis to design our method.

The main contributions of our paper on exploring

the data analysis can be summarized as follows.

First, we save space significantly over CDG since

we have a much more stable space occupancy that

scales linearly with the table size (e.g., see Fig. 5).

We do not need anymore the run-length encoding

(RLE) adopted in CDG by organizing suitably the

prefixes. Second, we improve lookup time by nearly
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30% (e.g., see Fig. 7). Third, we can dynamize

the table, performing updates quickly without re-

building the whole structure as previously required.

Concurrent access is permitted while updating.

We think that our contributions derive from the

simplicity of our scheme (see Fig.4) whose effi-

ciency is validated by our data analysis. Not only

we reduce space occupancy and make it scalable

linearly with the size of routing tables. Simul-

taneously we improve lookup time and obtain a

fast update algorithm for supporting announcements

and withdrawals so that it scales well. Our update

algorithm is robust since we can bound efficiently

the worst case, which is important as announce-

ments can be unauthenticated [11].

Our solution is algorithmic in nature and can

be implemented in hardware or software. Available

solutions assume to employ processors accessing

fast static random access memories (SRAMs) or

ternary content addressable memories (TCAMs).

We can use both technologies in our lookup scheme

and refer to [2] for a recent discussion on their

advantages and drawbacks. We can attain high

throughput by running our lookup scheme just

on a standard PC. We believe that performance

will greatly improve by implementing our scheme

with the aforementioned technologies to obtain an

embedded system for forwarding packets.

Space is not the main issue; more space-efficient

solutions for lookup tables can be found in the

literature but either they have slower access or are

difficult to update. Our space occupancy fits current

technology as it requires 1–2Mb of fast memory.

We also assert preliminary performance for IPv6

routing tables. Our findings on data analysis can be

exploited with other IP lookup methods to improve

their performance. Indeed, some of them makes

implicit use of the data distribution in routing

tables. Clearly our scheme can also be used to solve

the general problem of the longest prefix match but

we do not claim that its performance is as good as

in the case of the specific IP lookup problem.

The paper is organized as follows. We illustrate

our approach by getting the suitable glimpse into

data analysis in Section II. We show how to perform

lookups in Section III and updates with announce-

ments and withdrawals in Section IV. We describe

the construction of our lookup table in Section V.

We defer the comparison of our results to state-of-

the-art methods to Section VI.

router #snapshots from to

aads 538 10-01-00 05-15-02

mae-east 230 10-01-00 06-01-01

mae-west 618 10-01-99 04-12-02

paix 78 10-01-01 03-10-02

pacbell 576 12-09-98 05-15-02

ripe-ncc 365 01-01-03 12-01-03

ripe-ncc 19 10-10-99 04-01-04

TABLE II
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II. DATA ANALYSIS OF ROUTING TABLES

In this section we describe our data analysis on

routing tables so as to highlight a useful property of

middle-class prefixes, whose length ranges from 16

to 24. We call it themiddle-class effect. It allows

us to reduce both space occupancy and lookup

time, and to dynamize the lookup table efficiently.

While we do not claim to be the first to have

exploited this effect, our study explicitly stresses

its importance for designing IP lookup tables. We

first describe the large data set that we employed

from public databases of routing tables for IPv4 in

Section II-A. We illustrate the middle-class effect in

Section II-B, showing how to exploit it for a two-

layer organization in Section II-C. Based on the

latter, we describe an implementation of IP lookup

tables in Section II-D. We suggest how to scale it

to IPv6 in Section II-E.

A. Databases and experimental platforms

We base our analysis on an extensive data set of

more than 2400 snapshots of routing tables avail-

able from public databases, collected over a period

ranging from 1998 to 2004. The major source is that

at ftp.merit.edu/ipma/routing_table ,

the Internet Performance Measurement and Anal-

ysis (IPMA) project (currently dismissed). We also

collected all daily data for year 2003, plus some

monthly snapshots, fromdata.ris.ripe.net ,

the Network Coordination Centre of the Réseaux

IP Euroṕeens (RIPE NCC), router of Amsterdam.

We report the figures in Table II.

year2003update.eps

Fig. 1. Millions of daily announcements (top) and of daily

withdrawals (bottom) for RIPE NCC, in logarithmic scale on

the y-axis. The x-axis reports the 365 days in year 2003.

Some authors singled out individual snapshots

causing the worst-case behavior of CDG in terms of

space occupancy; hence, they are good benchmarks

for our method as well. Most of these tables have

been employed in the experiments of [9], [12]. The

remaining ones were sent to us [10]. We list them

in Table III.

As for the updates, we collectedall the an-

router date router date

aads 05-30-01 oregon-03 07-10-03

att 07-10-03 pacbell 05-30-03

east.attcanada 07-10-03 paix 05-30-01

funet 10-30-97 telstra 03-31-01

mae-west 05-30-01 telus 07-10-03

oregon-01 03-31-01 west.attcanada 07-10-03

TABLE III
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nouncements and withdrawals available for the en-

tire year 2003 on RIPE NCC. We plot in Fig.1

their number in millions (on the y-axis) on a daily

basis (on the x-axis). As we can see, the number

of withdrawals is an order of magnitude smaller

than the number of announcements. On the average,

there is approximately one announcement per sec-

ond; clearly, they arrive in bursts. For example, note

the peak of more than 20 millions of updates on

Oct 25–26, 2003. We will use this peak for intense

benchmarking in Section IV.

As for the lookups, we could not find publicly

available traffic traces, for privacy issues. We use

random data employed in previous work [9] and

synthetic data. We obtain the latter by extending the

approach in [13] to generate traffic data according

to the distribution of the prefixes of any given

routing tableT .

To begin with, let S be a stack whose posi-

tions are numbered2, 3, . . ., starting from the top.

Hence, when we push an item intoS, the item

gets position2 and the remaining ones are shifted

to positions 3, 4, etc. When we extract an item

at position i from S, we shift items in positions

i+1, i+2 . . . so that they occupy positionsi, i+1,

etc. Let’s fix a conditional probability0 < p < 1

(we setp = 0.9 in our experiments).

We generate traffic data using tableT , stackS

and probabilityp. The first IP address is chosen

uniformly at random, and is pushed into emptyS.

We then generate the remaining IP addresses one

by one according the following steps:

1) We choose a nonempty item from the stackS,

such that item in positionj is picked with probabil-

ity 2−j , for j = 2, 3, . . .; if we succeed, we output

that item (this happens with probability nearly1/2

for a sufficiently large stack).

2) If no item is chosen in step 1 (again, this

happens with probability nearly1/2), we toss a

biased coin (head with probabilityp and tail with

probability 1 − p) and run one of the two steps:

2.a—Head: choose a prefix fromT , uniformly

and at random, pad it with random bits to obtain a

length of 32 bits, and output it.

2.b—Tail: output a random IP address uniformly

and at random.

In all cases, we push the output address onto the

top of the stackS, and we extract its copy (if any)

from S.

For our experiments we employed two platforms.

The first is based on AMD Athlon XP 1900+

(1.6GHz), 256Mb RAM DDR at 133Mhz, 256Kb

L2 cache, 128Kb L1 cache (64 Kb data and 64Kb

instructions), Linux kernel 2.4.22. The second is

Intel Pentium 4 (2Ghz), 512Mb RAM DDR at

133Mhz, 512Kb L2 cache. We plan to extend

the experimentation to more platforms (e.g., those

based on the PowerPC). We usedgettimeofday

for timings. Since the results are similar, we will

refer to the first platform.
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dist_corr.eps

Fig. 2. Number of middle-class prefixes of RIPE NCC, in

logarithmic scale on the y-axis. The x-axis reports the216

intervals of the address space, each interval associated with

a distinct configuration of the first 16 bits in the addressing.

Each vertical bar counts how many prefixes fall within the

corresponding interval.

B. Distilling the middle-class effect in routing ta-

bles

In order to illustrate our ideas, let’s take any

favorite routing tableT into consideration. For

example, we choose the snapshot of the RIPE NCC

router taken on April 1st, 2004, containing 138201

prefixes. Note that analogous properties hold also

for the router snapshots in the data set described in

Section II-A. What is widely known is the skewed

distribution of prefixes from length 1 to 32 inT .

Indeed 98% of the prefix lengths are in the interval

[16 . . . 24], which we call middle-class prefixes. We

therefore focus on these prefixes, looking for some

more insight on their distribution.

We take the address space[0 . . . 232 − 1] parti-

tioned into equal intervals of size216, each interval

corresponding to a distinct configuration of the

first 16 address bits. For each interval, we count

how many middle-class prefixes ofT have their

first 16 bits corresponding to that interval. Fig.2

shows the resulting frequency of prefixes in these

intervals. We obtain a skewed distribution, and

this is typically a good sign for compressing data

(whereas a uniform distribution is bad in this sense).

But we need to get a further insight by examining

the trie storing all the prefixes inT (see [14] for

a definition of tries). The nodes of the tries are

labelled with the next hops according to the prefixes

in T . Some nodesu are also marked to record the

fact that the path from the root tou stores a prefix

of the table.

We can draw two cutlines on the trie, on levels 16

and 24, respectively. We obtain a set of at most216

sub-tries of height no more thanh = 8 (we recall

that the height is the numbering of levels in a

trie, starting from0 for the root). In order to state

a significant property on them, we need to recall

some terminology. Two tries areisomorphicif they

have the same shape, the same labels, and the

same marks on the nodes. Formally, two nodesu

and v are isomorphic (u ∼ v) if they are both

null, or the following conditions hold:label(u) =

label(v), mark(u) = mark(v), left(u) ∼ left(v),

and right(u) ∼ right(v). Hence, two tries are

isomorphic if and only if their rootsu andv satisfy

u ∼ v. Note that we exploit this property in

Section IV for keeping an auxiliary data structure
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for processing announcements and withdrawals.

For the lookups, we prefer to consider a weaker

notion. Given a trie of heighth, let’s expand it to

its complete form (also called prefix expansion) so

that all the leaves are on the same level. Nodes are

still labeled and marked according to the prefixes

in T , expect that we now have all the leaves so as to

represent explicitly all possible2h binary strings of

lengthh. Note that each string is associated with its

correct next hop when seen as part of an IP address.

We say that two tries of heighth are equiva-

lent, if the sequence of next hops in the leaves

of the former is identical to that of the latter,

when scanned in left-to-right order. In other words,

when a lookup withh bits is performed on two

equivalent tries, the next hops thus returned make

them indistinguishable. Note that two isomorphic

tries are equivalent while the vice versa is not

necessarily true as different combinations of shapes

and labels/marks can yield the same sequence of

next hops.

We are therefore interested to select one rep-

resentative for each class of equivalent tries. In

our case, we apply this selection to the sub-tries

of height at most 8 obtained from the cutlines on

levels 16 and 24 (corresponding to the middle-class

prefixes). How many of them are equivalent? For

random data, we expect that there are no equivalent

sub-tries as the probability of finding two equivalent

sub-tries is negligible.

We illustrate this point for isomorphic sub-tries.

There are at least2300 sub-tries of height at most 8,

since the numberbh of binary trees of heighth > 0

is the solution to recurrencebh = b2

h−1
+ bh−1(1 +

√

4bh−1 − 3 ) as shown in [15], from which we can

computebh > 2300 for h = 8. If we account for

the fact that our sub-tries have nodes labeled, the

number is even larger. Hence the probability that

two sub-tries are isomorphic,p < 1/2300, is very

near to zero. We can have216 such sub-tries for

a routing table. Hence the probability thatno two

sub-tries are isomorphic is very near to one, i.e.,

(1 − p)2
16

≈ 1. For equivalent sub-tries, we can

extend the above argument to the random sequences

made up of 256 next hops.

Fortunately we can observe what we call the

middle-class effectin real routing tablesT when

we build the trie on the prefixes inT :

many sub-tries of height at most 8 on

level 16 are equivalent with lots of repe-

titions, and they store the great majority

of prefixes inT .

So there is a good chance to store fewer than

216 sub-tries by keeping just one representative for

each equivalence class. Even though the majority

of prefixes are middle-class (98% in ourT ), they

follow some regular patterns in the routing table.

This fact is reinforced by observing that the

empirical probability of finding that two consecu-

tive sub-tries are equivalent is high, when scanning

the sub-tries on level 16 in left-to-right order. For

example in our tableT , there are 13834 nonempty

sub-tries of height at most 8 on level 16. We
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obtain just 5954 of them after removing a sub-trie

if it is equivalent to its predecessor in a left-to-

right scan (as we do during the table construction).

Among these, we are left with 3241 representatives

of equivalence classes. These are not random data

indeed!

C. Two-layer approach

Following what claimed in the middle-class ef-

fect, we can transform the trie built on the prefixes

in T . We illustrate our approach by referring toT

shown in Table I. We first select only the prefixes

of length up to 24 and the first 24 bits of longer

prefixes, associating the dummy next hop with them

(we use the value of 255 in our experiments). They

form what we calllayer 1. The set of the remaining

prefixes, longer than 24, is augmented by taking

their first 24 bits and associating with them the

suitable next hop inherited from layer 1. All these

prefixes formlayer 2. Table IV shows an example.

Note that “dummy” prefixes of length 24 in layer 1

correspond to prefixes of length 24 with the correct

next hop in layer 2. Their number cannot be larger

than the number of prefixes longer than 24.

We then build a trie on the prefixes on layer 1

alone and collapse equivalent sub-tries of height

at most 8 on level 16, so as to form a direct

acyclic graph (DAG) shown in Fig. 3. This gives

a sufficiently good compression of the information

stored in a routing table. As we shall see, the

prefixes in layer 2 are small in number with respect

to those in layer 1.

dag.eps

Fig. 3. Left: a trie for the prefixes inT . Right: the corre-

sponding DAG in which the equivalent sub-tries of height at

most 8 on level 16 are collapsed for the prefixes in layer 1.

D. Lookup tables exploiting the middle-class effect

We now describe a simple, but powerful, lookup

scheme based on the middle-class effect described

in Section II-B and on the two-layer organization

proposed in Section II-C.

Given our routing tableT , we build two lookup

tables for its prefixes. The first table stores the

prefixes of layer 1 while the second table stores the

prefixes of layer 2 (see again Table IV). We model

our lookup scheme by these two layers. We begin

by focussing on the lookup table for layer 1 (that

layer 1 layer 2

65.10.10.0/24 1 192.168.0.0/24 3

192.168.0.0/17 2 192.168.0.0/32 4

192.168.0.0/18 3 192.168.0.0/29 5

192.168.64.0/18 2

192.168.0.0/24 255

TABLE IV
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for layer 2 depends on the implementation chosen

as we shall see).

We expand the upper part of the DAG in Fig. 3

that corresponds to the first 16 levels, into a com-

plete binary trie with216 leaves. The lower part of

the DAG is a set of sub-tries of height at most 8, as

previously mentioned. Following the definition of

equivalence, we compute the sequence of 256 next

hops obtained by each such sub-trie. We obtain a

two-dimensional table for layer 1 as follows.

hop: it is the two-dimensional array of̂α × 256

next hops, wherêα is the number of non-equivalent

sub-tries of height at most 8 on level 16 of the

DAG, and each such sub-trie is represented by its

sequence of28 = 256 next hopswithout RLE

compression;

row: it is the array of216 entries mapping the first

16 bits of IP addresses to the suitable row ofhop

(equivalently, they represent the children pointers

of DAG nodes on level 16).

For example, with reference to layer 1 in Ta-

ble IV, we obtain the lookup table shown in

Fig. 4. Here, we havêα = 3 rows in hop. Put

into simple words, for any IPv4 addressx =

x1.x2.x3.x4, the next hop obtained by searchingx

into the trie compactly represented by the DAG

is that stored inhop[ row[x1.x2], x3 ]. So, an IP

lookup for x = 192.168.32.27 successfully stops

at layer 1 by returning the next hop3, which is

located athop[ row[192.168], 32 ]. Instead,x =

192.168.0.27 requires to continue the lookup in

layer 2 as it returns the dummy value 255 stored in

GG.eps

Fig. 4. The arraysrow and hop for the prefixes in layer 1

shown in Table IV. No-route-to-host is the empty prefix with

next hop 0.

hop[ row[192.168], 0 ].

Before discussing the experimental analysis on

the lookup in Section III, we first assess the space

occupancy of our scheme in the rest of this section.

Fact 1: Layer 1 occupieŝα×256+216·#pointer

bytes, whereα̂ ≤ 216 is the number of non-

equivalent sub-tries of height at most 8 on level 16,

and#pointer ≥ (log2 α̂)/8 is the number of bytes

encoding a pointer tohop’s rows.

In the worst case,hop occupies no more than

16 Mb androw needs 256 Kb (using 4-byte point-

ers) by Fact 1. This is actually a pessimistic esti-

mate, since we only keep the sub-tries that arenot

equivalent each other. What we can experimentally

observe is that our data-analysis driven choice for

layer 1 pays back in terms of space occupancy when

compared to CDG.

In order to have a fair comparison with our

scheme, we must add the space taken by the

lookup table adopted for layer 2. We report in

Table V the figures for several choices with router

west.attcanada (see Section II-A), where we com-
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pare several methods for storing the prefixes in

layer 2: CDG, array with binary search,k-way

search (withk = 8 and k = 2n where n is the

number of prefixes), binary tries, and hybrid tries in

which the first three levels are indexed by individual

bytes and the next 8 levels (at most) are indexed by

individual bits. Indeed, a lookup in layer 2 surely

matches at least the first 24 bits by construction.

Lookup times measure the number of microseconds

for running 100,000 lookups.

We computed similar tables with other snapshots,

as it turns out that hybrid tries are the best trade-off

between space and lookup time. Choosing hybrid

tries for storing prefixes in layer 2, we report in Ta-

ble VI the space improvement with respect to CDG

for the 12 benchmark tables listed in Section II-

A. As we can see, the column corresponding to

our scheme gives a quite stable occupancy in space

with respect to the routing table size (#prefixes).

This is better highlighted if we consider the entire

lookup Kb

time total layer 1 layer 2

CDG 7012 2022 1521 501

Binary Search 5221 1556 1521 35

K Partition 5274 1556 1521 35

N Partition 5211 1608 1521 87

Binary Trie 5758 1649 1521 128

Hybrid Trie 5297 1649 1521 128

TABLE V

year 2003 of RIPE NCC, with the results for our

scheme being plotted on the bottom of Figure 5.

The net result for our scheme is a lookup table

whose space occupancy scales linearly with the

number of prefixes (clearly, layer 1 alone scales as

well; moreover, its maximum size is 16Mb). Fig. 6

illustrates this behavior for the available monthly

snapshots of RIPE NNC, from October 1999 to

April 2004, with a number of prefixes ranging from

65841 (yielding α̂ = 1404) to 138201 (yielding

α̂ = 3241). As it can be noted, layer 1 has a size

ranging in [9n . . . 14n] bytes for n prefixes. For

the sake of comparison, a straightforward storage

of these prefixes alone in a routing table would

require 6n bytes. Namely, each prefix requires a

4-byte word of memory; its prefix length and its

next hop need one byte each.

router #prefixes CDG (Kb) ours (Kb)

aads 32505 3706 1084

att 121711 2188 1822

east.attcanada 127561 16418 1661

funet 41328 666 540

mae-west 71319 4643 1290

oregon-01 118190 9897 1596

oregon-03 142883 9026 2164

pacbell 45184 3170 982

paix 17766 2745 875

telstra 104096 8896 1490

telus 126687 11390 1724

west.attcanada 127576 16749 1664

TABLE VI
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dim_anno_k.eps

Fig. 5. Space occupancy of our scheme vs CDG for

RIPE NCC. The x-axis reports the 365 daily snapshots of year

2003 and the y-axis the occupied space in bytes.

We computed this statistics also for all daily

snapshots of 2003 of RIPE NCC (see Section II-

A), and the total size of our lookup table (using a

hybrid trie for layer 2) is in the range[7n . . . 16n],

thus confirming the linearity of space also in this

case.

At this point, we may wonder whether more

sophisticated technique can better exploit the prop-

erties of the DAG in Fig. 3. For example, we could

consider more cutlines and adaptive expansion of

sub-tries [1]. While we do not claim this as a

general rule, we believe that improving further

the space occupancy of our scheme can worsen

significantly the performance of lookup and update

operations. As it would be clear in the rest of the

paper, we want to update easily the data structure

while guaranteeing very fast lookup operations. Our

scheme is simple, very fast and keeps the space

scale.eps

Fig. 6. Space occupancy of our scheme scales linearly with

table size. The x-axis reports the number of prefixes and the

y-axis the number of bytes taken. Plotted points are bounded

by the two linear functionsf(n) = 9n andg(n) = 14n.

reasonable (although not at a minimum). Simplic-

ity and efficiency are the major features of our

approach. We give three illustrative scenarios for

implementing it, and more are possible by varying

the lookup scheme adopted for layer 2.

The first implementation uses SRAM with a

uniprocessor, which is also the basis for our ex-

periments as it can be easily set up. We use hybrid

tries for storing the long prefixes in layer 2. The

size of our scheme for layer 1 is comparable to

the current size of caches (≈ 1–2Mb) according

to our experiments. A random lookup accesses the

table for layer 1 with nearly 99.8% hit ratio, so that

branch prediction works well for testing if lookup

must go on querying layer 2. We report experimen-

tal data on this implementation in Section III.

The second implementation uses a bi-processor.
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One processor’s cache holds layer 1 (the master)

while the other processor’s cache holds the hybrid

trie for layer 2 (the slave). Lookups are in parallel

but the slave processor can be interrupted when the

master processor succeeds (which happens in the

majority of cases).

The third implementation is challenging as it

is purely hardware with a minimal requirement

for logics. We storerow into on-chip SRAM and

hop into off-chip SRAM. We can preallocate the

maximum size of both by Fact 1. We suggest

to use TCAM for layer 2, typically storing few

long prefixes (less than 15% in our data set). The

expected size of the TCAM can be easily computed

by performing statistics on the table prefixes longer

than or equal to 24 bits. Again lookup is in parallel

and can be implemented with negligible extra logic

for selecting the output from TCAMs, when the

next hop in layer 1 is dummy (255 with our data).

We achieve one address lookup per clock cycle in

this way.

E. Scaling to IPv6

Our solution has good chances to

scale to IPv6 addressing. Although there

are not so many available data, some

downloadable routing tables are published in

http://net-stats.ipv6.cselt.it/bgp .

Here the relevant address type is global unicast.

The first 64 bits are the most important ones for

backbone routing as the remaining 64 bits are for

specifying an interface (e.g., a MAC address),

whose routing is mainly an intranet task. We

observed also here the middle-class effect on a

different scale. For our table, we have two cutlines

at 24 and 48 bits and no prefixes are shorter

than 24. We can blend our scheme and CDG by

introducing an arraycol, and by reducing the

number of columns inhop with RLE in layer 1.

Prefixes longer than 48 are stored in layer 2. For

an address lookup, we hash the first 24 bits to

a suitable entry ofrow and the next 24 bits to

a suitable entry ofcol, which points to hop.

If the returned hop is dummy, we perform the

lookup in layer 2 as before. We increase the

number of memory accesses to 3 and require the

computation of two hash functions. So we expect

that our method is competitive also for IPv6

address lookup but we need more data to assess

this experimentally.

III. PERFORMINGLOOKUPS

The improved space bounds described in Sec-

tion II makes our scheme more stable to use with

respect to CDG. What about lookup time in IPv4?

We recall that CDG requires 3 accesses in the worst

case. We improve significantly this performance.

We require just two accesses plus an access to

layer 2, the latter with very low hit ratio as we show

next. As a result, our method is approximately 30%

faster than CDG.

As previously mentioned, the lookup scheme is

simple and requires trivial logic to be implemented

also in hardware. Assume that, for any given IP
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addressx = x1.x2.x3.x4, we have the variable

lx = x1.x2 storing the first 16 bits ofx andrx =

x3.x4 storing the last 16 bits, so thatx = lx.rx. We

use the right shift operator onrx to get bytex3 and

to perform a lookup. If we get the dummy value 255

in layer 1, we need to perform a lookup also in

layer 2.

#define DUMMY 255

if ( (h1 = hop[ row[lx], rx>>8 ]) != DUMMY )

return h1;

return lookup_layer2( lx.rx );

We measured the running time of our method and

of CDG on the daily snapshots of RIPE NCC for

the year 2003. We employed the synthetic traffic

data for each individual snapshot as explained in

Section II-A. As it can be noted in Fig. 7, our

lookups are definitively faster than those in CDG by

30%. This is consistent with the fact that we reduce

the number of memory accesses from 3 to 2.

It turns out that the role played by the data

structures in layer 2 is rather limited in our data

set, except for one single case that we discuss next.

We report the experimental data in Table VII for

the 12 benchmarks described in Section II-A. We

use both random and syntetic data. For random

data, the figures in italic correspond to random

data employed in the experiments of [9], [12]. The

columns hit-2 count how many hits our lookup

made in layer 2. The other columns measure the

running time in microseconds for 100,000 lookups.

We can observe that the hit ratio for layer 2

daily_cm-t.eps

Fig. 7. Number of microseconds (on the y-axis) required

by 1 million of lookups in CDG (top) and in our scheme

(bottom) using synthetic traffic. The x-axis reports the 365

daily snapshots of RIPE NCC 2003.

is very low, so that branch prediction in the if-

statement works fine by returning the next hoph1

of layer 1. As a result, our scheme requires essen-

tially two memory accesses for the lookups. Note

that, contrarily to the rest of the snapshots in our

data set, oregon-01 performs badly with our scheme

on the random data used in [9] (while it performs

equally with random data generated by us). Here is

a clear example showing that the choice of a hybrid

trie as lookup mechanism in layer 2 is not enough

powerful. Indeed, there are many prefixes of length

between 28–32 and lookups in layer 2 match long

prefixes, which is painful for trie searching.

If we use CDG for layer 2, then we obtain an

improvement. This shows that the apparently bad

performance of our lookup scheme on oregon-01

is due to layer 2 and not to layer 1, which is
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quite stable and compact. As remarked before, in

all other snapshots we observed a limited impact

on the overall performance by the lookup method

adopted in layer 2. Nevertheless, this appears not

to be the case for the snapshot oregon-01.

A similar situation may occur if some malicious

routing uses addresses that access layer 2 very

often. We can observe that the cache can adapt

to this skewed access nicely since the number of

routes in layer 2 is limited (see Section II-D) and

most of the data structure for layer 2 becomes

resident in the cache. To alleviate this problem, we

can exploit the fact that we surely match the first

24 address bits in layer 2. We suggest to use some

cache-efficient trie for layer 2 (e.g., see [16]).

We remark that we obtain a good performance

in all other cases with just a hybrid trie on layer 2.

IV. PERFORMINGUPDATES

We now describe one of the main effects of

our simplification of the lookup scheme. We show

how to handle efficiently the updates of the lookup

table when announcements and withdrawals of

routes arrives on the fly. We do not to rebuild

the lookup table from scratch. Instead, we combine

the best features of fast lookup using arrays with

the flexibility of dynamically linked data structures

while avoiding their drawbacks (rebuilding and

slow lookup time, respectively).

We describe how to use our method (see Sec-

tion II-D) by assuming that some reasonably effi-

cient method has been adopted for layer 2 (e.g.,

tries, multi-level hashing, TCAMs, etc.). Again we

base our method on real data analysis to show

that the great majority of updates involves layer 1,

consistently to what observed in the middle-class

effect. We also make our scheme more robust by

providing a good, exact upper bound on the number

of entries changed in the lookup table in the worst

case.

As described in Section II-D, we employhop

and row for layer 1. It is crucial to observe that

hop is stored inrow-major order. Since we adopt

the maximum number of columns, 256, the only

admissible size change inhop is to add or remove

rows. Performing this change on the columns would

result in a disaster, as the wholehop would need to

be re-allocated dynamically, which can have a cost

analogous to that of rebuilding. Here is why we opt

for keeping all the 256 columns. Experimentally

we observed that RLE on runs of equal next hops

would reduce the number of columns by a negligi-

ble value only at the price of reconstruction. So we

prefer to have fast update and waste a bit of space.

This also guarantees a high level of concurrent

access to our lookup table during its lifetime.

We assume realistically that the prefixes in route

announcements and withdrawals are of length at

least 8 (they can be shorter in case of heavy network

failures, but then updating a routing table is a minor

problem. . . ). We also assume that there are at most

127 distinct next hop values in layer 1. We reserve

the most significant bit in each entry ofhop for

marking it as dummy; note that we do not use
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update_layer2.eps

Fig. 8. On the y-axis, percentage of daily updates (less than

0.7%) involving layer 2 for RIPE NCC. The x-axis reports the

365 daily snapshots of year 2003.

anymore the dummy value of 255 as in Section II-

D. Masking this bit yields the correct next hop

value. If more values than 127 are needed, we

suggest to add 32 bytes at the end of each row

of hop for storing these mark bits. If more than

256 next hops are needed, we suggest to simply

allocate two bytes per entry ofrow.

A. Further data analysis

We performed data analysis on the update traces

for RIPE NCC. We collected the huge number of

all the announcements and withdrawals available

for year 2003 (see Section II-A). We report in

Fig.8 the percentage of daily updates involving

layer 2. Note that the maximum percentage is less

then 0.7%, with almost all values below 0.1%.

This confirms once again the middle-class effect

that we observed on routing tables in Section II-

B, motivating our choice to build layer 1 on the

first 24 bits. We suggest therefore to use a well-

tuned trie in layer 2, as its update cost does not

influence significantly the overall performance of

announcements and withdrawals in a router.

B. Handling announcements and withdrawals

We show how to process efficiently announce-

ments and withdrawals that are produced during the

execution of the border gateway protocol (BGP).

When an announcements arrives, we have to insert

a certain prefixp with its associated prefix lengthlp

and next hophp, into layer 1. Recall that8 ≤ lp ≤

32 by our assumptions. We distinguish among three

main cases for describing the worst-case effect of

this insertion onrow andhop, illustrating them by

using the example of layer 1 in Table IV and its

associated arraysrow and hop shown in Fig. 4.

(We will discuss how to determine which entries

change in Section IV-D.)

1) Caselp < 16: since lp ≥ 8, we have to

change no more than256 entries inrow. However,

each of them could change up to256 entries in

hop. The worst case is therefore that of changing

256+216 entries. In practice, the number of entries

is much smaller. In our example, if we announce

route p = 192.0.0.0 with prefix length lp = 8

and next hophp = 6, we change the entries in

row[192.0 . . . 192.255] exceptrow[192.168]. They

all point to a new row inhop that is made up

of all 6s. Note that we cannot create many such

rows as the number of distinct hop values is limited
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(to 127 in our case). In the row ofhop pointed

by row[192.168], we replace its right half of0s

with 6s. This is the situation that can be replicated

over many rows, and that may cause the worst-case

behavior, which we can bound as above.

2) Case16 ≤ lp ≤ 24: here is the most frequent

case according to the middle-class effect. We may

change one entry ofrow to point from one row of

hop to another, since the insertion ofp requires to

change some entries of the row previously pointed

in that entry ofrow. We may require to add a new

row when none of the existing ones match this

change. In the worst case, we change no more than

1 + 256 entries. Going on in our example, if we

announce routep = 192.168.128, lp = 20, and

hp = 7, we modify the row ofhop pointed by

row[192.168], so that the 16 entries starting from

position 128 change from6s to 7s. Note that we

do not need to create a new row as there is only

one entry pointing. We should therefore know how

many entries inrow point a given row ofhop to

this end.

3) Caselp > 24: We may change one entry in

row and one inhop; however, the latter change

may cause the creation of a new row inhop as

discussed in case 2. Continuing our example, if

we announce routep = 192.168.128.12, lp = 26,

and hp = 8, we just have to change entry 128

in the row of hop pointed by row[192.168]. Its

value changes from7 to 128 + 7 (we set the most

significant bit to 1 for marking it as dummy), and

we must insertp, lp, hP into layer 2. Note that

using 255 as dummy would also cause an insertion

into layer 2 of192.168.128.12/24 with next hop7.

This is a problem since we can change many entries

in case 1, and this change can reflect on layer 2

as well. Our solution of using the most significant

bit is just straight since we do not insert anymore

the first 24 bits of longer prefixes into layer 2 as

previously illustrated in Table IV. This guarantees

that an update falling into cases 1–2 does not

propagate to layer 2 as a side effect.

Since we adopt a different encoding for dummy
values, we need to change slightly the lookup
procedure.

#define MSBIT 0x80

#define NO_ROUTE_TO_HOST 0

if ( ! ((h1 = hop[ row[lx], rx>>8 ]) & MSBIT) )

return h1;

if ( (h2 = lookup_layer2( lx.rx )) != NO_ROUTE_TO_HOST )

return h2;

return h1 & ˜MSBIT;

If a lookup in layer 2 returns no-route-to-host,

then we must return the next hop value (with its

most significant bit cleaned) previously computed

in layer 1. Although it may appear that we are

worsening the performance of the original lookup

algorithm in Section III, we observe that the hit

ratio for the first if-statement is very high and deter-

mines the real lookup cost, which stays unchanged

according to the experimental evaluation discussed

in Section III

Withdrawals have an effect onrow and hop

similar to announcements, except that we have to

handle “hidden” prefixes. When we delete a prefix,

we should find the “parent” of that prefix and
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propagate its next hop downward to replace that

of the deleted prefix. For example, starting from

Fig. 4, the withdrawal of route192.168.0.0/18

from layer 1 in Table IV, causes the propagation

of the next hop 2 (in place of 3) since it associated

with the shorter prefix192.168.0.0/17.

As a result we add or remove one row at most in

hop. Removed rows are linked in a free list that can

be reused for adding rows. This does not change the

lookup procedure and its cost.

Since the main cost is given by the number

of entries changed inrow and hop, we computed

statistics to account for this cost, classifying it

according to cases 1–3 (both for announcements

and withdrawals).

We processed the peak of Oct. 25–26, 2003,

in router RIPE NCC. Table VIII shows that ap-

proximately 99.3% of the updates fall into case 2.

Roughly half of them involve a prefix lengthlp =

24, and so they change just one entry inhop. Actu-

ally, the average number of changed entries inrow

andhop is nearly 1. For case 1, the most expensive

one, the variance is high for a small number of

updates while the rest of updates does not change

any row of hop. On Oct. 25, just 1495 updates

changed entriesrow andhop; on Oct. 26, they were

1889. These few updates changed between 100 and

1000 entries; we found a single example in which

there were 20,985 changed entries, approaching the

worst case.

The net result of the case analysis discussed so

far is that updates are of bounded cost in layer 1,

also in the worst case. This cost scales well with the

number of updates and prefixes stored in layer 1.

Fact 2: In the worst case the announcement or

withdrawal of an IPv4 route changes at most 256

entries inrow and at most216 entries inhop in

case 1. The number of changed entries inhop

becomes256 in cases 2 and 3. In all cases, the

empirical average number of changed entries is

nearly 1.

C. Concurrent access

We have seen that, although rare, an update

may change thousands of entries. Should we stop

performing lookups meanwhile? Fortunately it is

not so, as concurrent access is possible. It suffices

that, when a row is created inhop, the pointer

in row is changed after that the row is correctly

filled. In this way, any lookup either accesses an

entry of hop before or after the update, but not

during it! Concurrent access is possible in limited

form also among updates, if they work on different

rows of hop. We can safely guarantee the lookup

functionality of our scheme while updating; so

the cost of the update can be spread among a

sequence of lookups without freezing the router for

this reason (except for memory contention due to

simultaneous access).

July 6, 2004 DRAFT



19

D. Auxiliary data structures for dynamic lookup

table

We need to identify which entries change in ar-

raysrow andhop in order to handle announcements

and withdrawals. There are several possibilities for

this. We assume that the bookkeeping information

is maintained elsewhere (e.g., see [2]) and does not

interfere with the caching and prefetching of lookup

data inrow andhop. We propose one solution that

seems reasonable to us. It makes use of a counter

for each row ofhop for counting how many entries

of row point to it. It also uses a hashing table for

detecting equivalent sub-tries of height at most 8

on level 16, as they give rise to equal rows inhop.

We propose to use fingerprints as hash functions,

as they can be incrementally recomputed when only

few entries change in a row.

We also need auxiliary data structures also for

quickly locating “hidden” prefixes. For example,

in Table IV, prefix 192.168.0.0/17 is hidden

by 192.168.0.0/18 and192.168.64.0/18 .

However, if we withdraw 192.168.0.0/18 ,

then we must activate192.168.0.0/17 and

propagate its next hop. Another case is when two

prefixes with the same next hop are one prefix of

the other. If the shorter is deleted, then the longer

emerges. We to keep in a separate memory the DAG

in Fig. 3 with the notable difference that isomorphic

are collapsed, instead of equivalent ones. Indeed,

equivalent sub-tries are not able to discriminate the

situation mentioned above while isomorphic ones

do.

V. CONSTRUCTION OF THE LOOKUP TABLE

The construction of our table consists in building

a trie and then obtaining the DAG depicted in

Fig. 3. It is worth noting that we suggest to insert

the prefixes (truncated at 24 bits) into the trie in

order ofnondecreasing prefix length. If we do not

follow this pattern, we have to propagate downward

the next hop of the currently inserted prefix. That

is, we change the next hop to already created nodes.

If we follow the above pattern instead, we have to

assign the next hop only to newly created nodes and

this happens once per node. This also gives a better

performance in the worst case. For our tables, the

most time consuming construction was for oregon-

03, in 365 milliseconds. Note that, since we can

quickly handle updates, the construction time is less

important than in static lookup tables.

VI. RELATED WORK

Several approaches have been proposed in the

last few years for the IP lookup problem. The

survey in [1] describes the state of the art up to

2001, where CDG is shown to be an order of

magnitude faster than its competitors. Since we

improve over CDG, we claim that our method has

a good performance by transitivity. More recent

work is surveyed in [9] where recursive multibit

tries (retries) are presented,which can be applied

also to network clustering and telephone service

marketing. We can obtain an indirect comparison
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with the retrie. To our knowledge, it is the most

recent result that compares favorably with CDG

for the IP lookup problem. It attains a variable

improvement, which is mostly 30is based on dy-

namic programming and appears not to support

quick updates. Other recent approaches are based

on Bloom filtersg [2], multple hashing [17], strat-

ified trees [12], pipelined tries [18], [19], biased

skip lists [20], just to name a few. Several of them

support updates and have small space requirements.

It would be interesting to make a comparison with

these methods, since our scheme does not require

bit manipulation and hashing and makes two plain

memory accesses most of the time.
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router random synthetic

CDG ours hit-2 CDG ours hit-2

RIPE NCC 10936 5922 1136 6970 4106 1074

aads 7276 5903 5463 7452 4775 4820

att 12605 7351 15 7872 4941 16

east.attcanada 15096 8429 3220 9164 5450 3116

funet 3130 2461 88 5036 2783 67

mae-west 7217 5916 2385 7425 4565 2401

oregon-01 7740 9933 11693 7265 6654 10651

oregon-03 14262 9529 3565 8790 6023 3525

pacbell 6126 5078 3899 6584 4233 3458

paix 6306 5522 9683 6934 4682 8703

telstra 8468 7544 3899 7966 5317 3690

telus 14011 8177 2095 8630 5279 2228

west.attcanada 15071 8353 3277 9167 5350 3050

TABLE VII

date #announce #withdraw case 1 case 2 case 3

10-25-04 20459780 139787 0.68% 99.31% 0.01%

10-26-04 11538757 144937 0.67% 99.30% 0.03%

TABLE VIII
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