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Abstract— We consider the problem of fast IP off-chip memory in the hardware implementation).
address lookup in the forwarding engines of Internet It can quickly handle route announcements and
routers. Many hardware and software solutions avail- withdrawals on the fly, with a small cost which scales
able in the literature solve a more general problem on well with the number of routes. Concurrent access
strings, the longest prefix match. These solutions are is permitted during these updates. Our ideas may
subsequently specialized on real IPv4/IPv6 addressesbe helpful for attaining state-of-art link speed and
to work well on the specific IP lookup problem. may contribute to setting up a general framework
We propose to go the other way around. We first for designing lookup methods by data analysis.

analyze over 2400 public snapshots of routing tables Index Terms— System design, 1P lookup algo-

collected over five years, discovering what we call . . . . .
rithms, data analysis, forwarding engines, routing

the middle-class effect of the routes. We then exploit
tables.

this effect for tailoring a simple solution to the

IP lookup scheme, taking advantage of the skewed

T . . . INTRODUCTION
distribution of Internet addresses in routing tables.

Our algorithmic solution is easy to implement in The IP lookup problem is a recurrent problem in
hardware or software as it is tantamount to perform-  the |iterature for packet forwarding in Internet [1].

ing an indirect memory access. Its performance can p, ters have to forward lots of packets from input

be bounded tightly in the worst case and has very low .
gnty y interfaces to output interfacemdxt hop¥ on the

memory dependence (e.g., just one memory access to o
ground of the packets’ destination Internet address,

calledIP address Forwarding a packet requires an
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have to deal with links whose speed constantly iniP address 192.168.128.125; hence, the packet is
proves, the address lookup is considered one of tftiewarded to next ho®. We will consider only
major bottlenecks in high performance forwardingituations arising with single hops, since dealing
engines [1], [2]. Other bottlenecks, such as thoseth multihops is very similar. No-route-to-host is
involved by fair queueing policy and IP switchingthe special next hop 0 associated with the empty
technology, are well understood and handled [3].prefix e.

The IP address lookup problem was just con- Looking for the longest matching prefix in tables
sidered a simple table lookup problem at thef high-performance routers is a challenging prob-
beginning of Internet. In the early 1990s pedem. For networks with link speed of 10 gigabits
ple realized that routing information would growper second (OC-192), they need to forward up to
enormously, and introduced classless inter-doma3 millions of packets per second, assuming that
routing (CIDR) for reducing space by aggregatingach packet is 40 bytes long. A general solution
networks into prefixes [4]. In IPv4 [5] the prefixedo the longest prefix matching problem (LPM) is
are binary strings of variable length using theot the best choice since it has also to deal with
syntax X.Y.W.Z/L to represent the first bits of all the extreme situations that do not occur in real
the 4-byte wordX.Y.W.Z, where8 < L < 32. routing tables. The resulting algorithms are more
Prefixes can be up to 128 bits in IPv6 [6], with anvolved than a simple table lookup. The IP lookup
different syntax. More realistically we can assumproblem is more peculiar than LPM as the prefixes
prefix lengths up to 64 in IPV6 global unicasstored in the routing tables are not random strings.
addressing [7], since the first 64 bits are cruciah this paper we stress the importance of data
for backbone routing while the last 64 bits are foanalysis on real routing tabldseforedesigning IP
subnet routing, e.g., MAC addresses. lookup algorithms (we do not consider real traffic

The use of prefixes increases the complexity ainalysis as it is difficult to obtain public databases
the IP address lookup problem. For each packévy privacy reasons).
more than one prefix in the routing table can match The results in previous work mentioned in Sec-
the packet’'s IP address. In this case, the adoptiéoh VI describe the IP address lookup problem
rule is to take thdongest matching prefixGiven in the general terms of LPM. They first discuss
prefixespi, ps, ..., pn, for any binary stringr we how to solve its general form efficiently; then they
want to identify the longesip; that equals the present experiments to tune the performance of
first bits of x, where1l < i < n. For example, the proposed solutions to LPM when applied to
let's consider the prefixes in Table |. Both prethe specific IP address lookup problem on real

fixes 192.168.0.0/17 and 192.168.0.0/18 match theuting tables. We follow the opposite direction to
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have more insight into the problem. We start owtnd compression give very fast search times. How-
from the experimental analysis performed on publiever compression and the leaf pushing technique
databases of nearly 2400 snapshots of routing tablesed do not allow incremental updates. Rebuilding
collected over five years. We identify some newhe whole structure is the only solution.” Moreover,
parameters characterizing the (skewed) distributi@@me authors [9], [10] pointed out that in some
of prefixes in routing tables. Based upon our findzases the space requirement of CDG is too high
ings, we provide a new and simple solution to thand this may worsen its performance.
IP address lookup problem that circumvents severalln this paper we present a lookup scheme that
difficulties posed by the generality of LPM. exploit the original idea of CDG in a novel and even
Our starting point is the preliminary result basedimpler way. We discovered further properties that
on full expansion and compression of routing tabldst us understand how to avoid its drawbacks. The
by Crescenzi, Dardini and Grossi [8], shortly nameghain one is what we call theniddle-class effect
CDG by a subsequent paper [9]. To our knowledgs real routing tables: even though the majority
CDG is the first to describe a lookup schemef prefixes have lengths ranging from 16 to 24,
whose design is fully driven by data analysis. Ahey follow some regular patterns. So there is a
frequently cited survey [1] published in 2001 showgood chance to store the mapping from all the
that CDG is almost an order of magnitude fast&*? IP addresses to the next hops into a compact
than its state-of-the-art competitors at that time (sé&ble, so that lookup and update are very fast in
Table 3 in [1]). The frequency of lookups with smalbccessing the table by indirection. Some of the
response time in the worst case is impressivebasic properties that we distill have been implicitly
high and does not depend on the traffic througksed in some of the previous work to optimize
the router (see Fig. 22 in [1]). the performance of the proposed solutions. We go
Unfortunately CDG has some drawbacks. Thé&e other way around, and start out from our data

survey reports that “Schemes using multibit triegnalysis to design our method.

The main contributions of our paper on exploring

the data analysis can be summarized as follows.

prefix hop || prefix hag, t, we save space significantly over CDG since
65.10.10.0/24 1 192.168.64.0/18 2

we have a much more stable space occupancy that
192.168.0.0/17 2 | 192.168.0.0/32 4 _ _ _ _

scales linearly with the table size (e.g., see Fig. 5).
192.168.0.0/18 3 192.168.0.0/29 5

We do not need anymore the run-length encoding

TABLE | (RLE) adopted in CDG by organizing suitably the

prefixes. Second, we improve lookup time by nearly

July 6, 2004 DRAFT



30% (e.g., see Fig. 7). Third, we can dynamizeechnology as it requires 1-2Mb of fast memory.
the table, performing updates quickly without reWe also assert preliminary performance for IPv6
building the whole structure as previously requiredouting tables. Our findings on data analysis can be
Concurrent access is permitted while updating. exploited with other IP lookup methods to improve
We think that our contributions derive from theheir performance. Indeed, some of them makes
simplicity of our scheme (see Fig.4) whose effiimplicit use of the data distribution in routing
ciency is validated by our data analysis. Not onltables. Clearly our scheme can also be used to solve
we reduce space occupancy and make it scalakthe general problem of the longest prefix match but
linearly with the size of routing tables. Simul-we do not claim that its performance is as good as
taneously we improve lookup time and obtain @& the case of the specific IP lookup problem.
fast update algorithm for supporting announcements

and withdrawals so that it scales well. Our update The paper is organized as follows. We illustrate

algorithm is robust since we can bound efficientl;gur approach by getting the suitable glimpse into

the worst case, which is important as announcgf"ta analysis in Section Il. We show how to perform

ments can be unauthenticated [11] lookups in Section Ill and updates with announce-

Our solution is algorithmic in nature and Cal{nents and withdrawals in Section IVV. We describe

be implemented in hardware or software. Availablt(-{\1e construction of our lookup table in Section V.

solutions assume to employ processors accessWS defer the comparison of our results to state-of-
fast static random access memories (SRAMS) g}e-art methods to Section V1.

ternary content addressable memories (TCAMS).

We can use both technologies in our lookup scheme

and refer to [2] for a recent discussion on their

advantages and drawbacks. We can attain high

throughput by running our lookup scheme just ‘ router ‘#S”apsr‘oﬁ from ‘ to ‘
on a standard PC. We believe that performance | 229 538 | 10-01-00) 05-15-02
il Wi by i | . h mae-east 230 | 10-01-00| 06-01-01
will greatly improve by implementing our scheme ae-west 618 | 10-01.99| 04-12-02
with the aforementioned technologies to obtain an | paix 78 | 10-01-01| 03-10-02
embedded system for forwarding packets. pacbell 576 | 12-09-98 | 05-15-02
. o - ripe-ncc 365 | 01-01-03 | 12-01-03
Space is not the main issue; more space-efficient P
ripe-ncc 19 | 10-10-99| 04-01-04
solutions for lookup tables can be found in the
literature but either they have slower access or are TABLE II

difficult to update. Our space occupancy fits current
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II. DATA ANALYSIS OF ROUTING TABLES

In this section we describe our data analysis on
routing tables so as to highlight a useful property of
middle-class prefixes, whose length ranges from L&earZOOBupdate.eps
to 24. We call it themiddle-class effectit allows
us to reduce both space occupancy and lookup
time, and to dynamize the lookup table efficiently.

While we do not claim to be the first to have

exploited this effect, our study explicitly stresses
its importance for designing IP lookup tables. Wﬁig. 1. Millions of daily announcements (top) and of daily
first describe the large data set that we employ@ithdrawals (bottom) for RIPE NCC, in logarithmic scale on
from public databases of routing tables for IPv4 iff'® ¥-3Xis: The x-axis reports the 365 days in year 2003.
Section II-A. We illustrate the middle-class effect in

Section 11-B, showing how to exploit it for a two-

layer organization in Section II-C. Based on the Some authors singled out individual snapshots

latter, we describe an implementation of IP lookuf2uSing the worst-case behavior of CDG in terms of

tables in Section 11-D. We suggest how to scale {Pace occupancy; hence, they are good benchmarks

to IPV6 in Section II-E. for our method as well. Most of these tables have
been employed in the experiments of [9], [12]. The
A. Databases and experimental platforms remaining ones were sent to us [10]. We list them
We base our analysis on an extensive data setidfTable IlI.
more than 2400 snapshots of routing tables avail-As for the updates, we collectedll the an-
able from public databases, collected over a period

ranging from 1998 to 2004. The major source is that

. . . router date router date
at ftp.merit.edu/ipma/routing_table , ‘ H ‘ ‘
he | Perf M dA aads 05-30-01 || oregon-03 07-10-03
the Internet Performance Measurement an nal- . 07-10-03| pacbell 05-30-03
ysis (IPMA) project (currently dismissed). We also| east.attcanada 07-10-03 || paix 05-30-01
collected all daily data for year 2003, plus somg funet 10-30-97 || telstra 03-31-01
L mae-west 05-30-01 || telus 07-10-03
monthly snapshots, fromata.ris.ripe.net ,
oregon-01 03-31-01|| west.attcanada 07-10-03

the Network Coordination Centre of theéBeaux
IP Eurofgens (RIPE NCC), router of Amsterdam. TABLE Il

We report the figures in Table II.
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nouncements and withdrawals available for the en-1) We choose a nonempty item from the statk
tire year 2003 on RIPE NCC. We plot in Fig.1such that item in position is picked with probabil-
their number in millions (on the y-axis) on a dailyity 277, for j = 2,3, ...; if we succeed, we output
basis (on the x-axis). As we can see, the numbtat item (this happens with probability neadly2
of withdrawals is an order of magnitude smallefor a sufficiently large stack).

than the number of announcements. On the average,

, . 2) If no item is chosen in step 1 (again, this
there is approximately one announcement per sec-

ond; clearly, they arrive in bursts. For example, notréappens with probability nearly/2), we toss a

the peak of more than 20 millions of updates 0lrallased coin (head with probability and tail with
Oct 25-26, 2003. We will use this peak for intensgrObab'myl N

benchmarking in Section IV.

p) and run one of the two steps:

2.a—Head: choose a prefix froffi, uniformly

As for the lookups, we could not find IDUbIICIyand at random, pad it with random bits to obtain a
available traffic traces, for privacy issues. We uslgngth of 32 bits, and output it

random data employed in previous work [9] and

synthetic data. We obtain the latter by extending the 2.b—Tail: output a random IP address uniformly
approach in [13] to generate traffic data accordirgnd at random.

to the distribution of the prefixes of any given

i In all cases, we push the output address onto the
routing tableT'.

_ _ . top of the stackS, and we extract its copy (if any)
To begin with, letS be a stack whose posi-

tions are numbered, 3, .. ., starting from the top. from 5.

Hence, when we push an item int®, the item

gets position2 and the remaining ones are shifted For our experiments we employed two platforms.

to positions 3,4, etc. When we extract an itemThe first is based on AMD Athlon XP 1900+

at position: from S, we shift items in positions (1.6GHz), 256Mb RAM DDR at 133Mhz, 256Kb

i1+1,i+2 ...so that they occupy positiorisi +1, L2 cache, 128Kb L1 cache (64 Kb data and 64Kb

etc. Let's fix a conditional probability < p < 1 instructions), Linux kernel 2.4.22. The second is

(we setp = 0.9 in our experiments). Intel Pentium 4 (2Ghz), 512Mb RAM DDR at
We generate traffic data using talilg stackS 133Mhz, 512Kb L2 cache. We plan to extend

and probabilityp. The first IP address is choserthe experimentation to more platforms (e.g., those

uniformly at random, and is pushed into em@ty based on the PowerPC). We uggttimeofday

We then generate the remaining IP addresses doe timings. Since the results are similar, we will

by one according the following steps: refer to the first platform.
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tioned into equal intervals of siz&®, each interval
corresponding to a distinct configuration of the
first 16 address bits. For each interval, we count
how many middle-class prefixes af have their
dist_corr.eps ) ) ] ) )
first 16 bits corresponding to that interval. Fig.2
shows the resulting frequency of prefixes in these
intervals. We obtain a skewed distribution, and

this is typically a good sign for compressing data

{whereas a uniform distribution is bad in this sense).

Butwe n further insigh xaminin
Fig. 2. Number of middle-class prefixes of RIPE NCC, in utwe need to get a further insight by exa 9

logarithmic scale on the y-axis. The x-axis reports tié the trie storing all the prefixes ifi' (see [14] for

intervals of the address space, each interval associated withdefinition of tries). The nodes of the tries are
a distinct configuration of the first 16 bits in the addressing, . . .
g {abelled with the next hops according to the prefixes

Each vertical bar counts how many prefixes fall within th(_e
in 7. Some nodes are also marked to record the

corresponding interval.
fact that the path from the root to stores a prefix
of the table.
We can draw two cutlines on the trie, on levels 16

B. Distilling the middle-class effect in routing ta-
and 24, respectively. We obtain a set of at nij§t

ples sub-tries of height no more than= 8 (we recall

In order to illustrate our ideas, let's take anyhat the height is the numbering of levels in a
favorite routing tableT" into consideration. For trie, starting fromo for the root). In order to state
example, we choose the snapshot of the RIPE NGCsignificant property on them, we need to recall
router taken on April 1st, 2004, containing 138204ome terminology. Two tries aisomorphicif they
prefixes. Note that analogous properties hold alg@wve the same shape, the same labels, and the
for the router snapshots in the data set describedgame marks on the nodes. Formally, two nodes
Section II-A. What is widely known is the skewedand v are isomorphic ¢ ~ v) if they are both
distribution of prefixes from length 1 to 32 ii. null, or the following conditions holdiabel(u) =
Indeed 98% of the prefix lengths are in the intervajlbeg(v), mark(u) = mark(v), left(u) ~ left(v),
[16. .. 24], which we call middle-class prefixes. Weand right(u) ~ right(v). Hence, two tries are
therefore focus on these prefixes, looking for somgomorphic if and only if their roots andv satisfy
more insight on their distribution. u ~ v. Note that we exploit this property in

We take the address spafte .. 232 — 1] parti- Section IV for keeping an auxiliary data structure
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for processing announcements and withdrawals. since the numbei;, of binary trees of height > 0

For the lookups, we prefer to consider a weakes the solution to recurrends, = b%q +bp—1(1+
notion. Given a trie of height, let's expand it to /4b,_; — 3) as shown in [15], from which we can
its complete form (also called prefix expansion) scomputeb;, > 23 for » = 8. If we account for
that all the leaves are on the same level. Nodes dhe fact that our sub-tries have nodes labeled, the
still labeled and marked according to the prefixasumber is even larger. Hence the probability that
in T, expect that we now have all the leaves so astwo sub-tries are isomorphig, < 1/23% is very
represent explicitly all possibl2” binary strings of near to zero. We can hav®% such sub-tries for
lengthh. Note that each string is associated with ita routing table. Hence the probability thad two
correct next hop when seen as part of an IP addressb-tries are isomorphic is very near to one, i.e.,

We say that two tries of height are equiva- (1 — p)216 ~ 1. For equivalent sub-tries, we can
lent if the sequence of next hops in the leavesxtend the above argument to the random sequences

of the former is identical to that of the lattermade up of 256 next hops.

when scanned in left-to-right order. In other words, Fortunately we can observe what we call the

when a lookup withh bits is performed on two mjiddle-class effecin real routing tablesl” when

equivalent tries, the next hops thus returned maligs build the trie on the prefixes if:
them indistinguishable. Note that two isomorphic _ .

_ _ _ _ _ many sub-tries of height at most 8 on

tries are equivalent while the vice versa is not . .
. _ o level 16 are equivalent with lots of repe-
necessarily true as different combinations of shapes o
. titions, and they store the great majority
and labels/marks can yield the same sequence of . )
of prefixes inT'.
next hops.

We are therefore interested to select one rep© there is a good chance to store fewer than
resentative for each class of equivalent tries. f° Sub-tries by keeping just one representative for
our case, we apply this selection to the sub-tri&ich equivalence class. Even though the majority
of height at most 8 obtained from the cutlines off prefixes are middle-class (98% in ofi), they
levels 16 and 24 (corresponding to the middle-cla&gllow some regular patterns in the routing table.
prefixes). How many of them are equivalent? For This fact is reinforced by observing that the
random data, we expect that there are no equival@mpirical probability of finding that two consecu-
sub-tries as the probability of finding two equivalentive sub-tries are equivalent is high, when scanning
sub-tries is negligible. the sub-tries on level 16 in left-to-right order. For

We illustrate this point for isomorphic sub-triesexample in our tabld’, there are 13834 nonempty

There are at leag®® sub-tries of height at most 8,sub-tries of height at most 8 on level 16. We
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obtain just 5954 of them after removing a sub-tri

¢

if it is equivalent to its predecessor in a left-tor
right scan (as we do during the table construction)ag.eps
Among these, we are left with 3241 representatives

of equivalence classes. These are not random data

indeed!

Fig. 3. Left: a trie for the prefixes iff". Right: the corre-
C. Two-layer approach sponding DAG in which the equivalent sub-tries of height at

Following what claimed in the middle-class ef_most 8 on level 16 are collapsed for the prefixes in layer 1.

fect, we can transform the trie built on the prefixes
in T. We illustrate our approach by referring 10
shown in Table I. We first select only the prefixe?' Lookup tables exploiting the middle-class effect
of length up to 24 and the first 24 bits of longer We now describe a simple, but powerful, lookup
prefixes, associating the dummy next hop with thegtheme based on the middle-class effect described
(we use the value of 255 in our experiments). They Section II-B and on the two-layer organization
form what we callayer 1 The set of the remaining proposed in Section II-C.

prefixes, longer than 24, is augmented by taking Given our routing tabl&’, we build two lookup
their first 24 bits and associating with them thesples for its prefixes. The first table stores the
suitable next hop inherited from layer 1. All thesgyrefixes of layer 1 while the second table stores the
prefixes formlayer 2 Table IV shows an example.prefixes of layer 2 (see again Table 1V). We model
Note that “dummy” prefixes of length 24 in layer loyr lookup scheme by these two layers. We begin

correspond to prefixes of length 24 with the corregy focussing on the lookup table for layer 1 (that

next hop in layer 2. Their number cannot be larger

than the number of prefixes longer than 24.

We then build a trie on the prefixes on layer 1L layer 1 layer 2
alone and collapse equivalent sub-tries of heighf"S'lo'lO'O/24 1 192.168.0.0/24 3
. 192.168.0.0/17 2 192.168.0.0/32 4
at most 8 on level 16, so as to form a direct
. . . . . 192.168.0.0/18 3 192.168.0.0/29 5
acyclic graph (DAG) shown in Fig. 3. This gives
N _ _ | 192.168.64.0/18 2
a sufficiently good compression of the information
192.168.0.0/24 255
stored in a routing table. As we shall see, the
prefixes in layer 2 are small in number with respect TABLE IV

to those in layer 1.
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10

for layer 2 depends on the implementation chosen
as we shall see). GG.eps

We expand the upper part of the DAG in Fig. 3

that corresponds to the first 16 levels, into a com-

plete binary trie with2'® leaves. The lower part of
the DAG is a set of sub-tries of height at most 8, gd9. 4. The arraysrow andhop for the prefixes in layer 1

. . . . shown in Table V. No-route-to-host is the empty prefix with
previously mentioned. Following the definition of

next hop O.

equivalence, we compute the sequence of 256 next
hops obtained by each such sub-trie. We obtain a
two-dimensional table for layer 1 as follows.

- , , hop|[row[192.168], 0].
hop: it is the two-dimensional array a¥ x 256

next hops, where is the number of non-equivalent Before discussing the experimental analysis on

sub-tries of height at most 8 on level 16 of théhe lookup in Section 11, we first assess the space

DAG, and each such sub-trie is represented by gccupancy of our scheme in the rest of this section.

. i 16 '
sequence of® = 256 next hopswithout RLE Fact 1: Layer 1 occupies x256+2"°-#pointer

compression:; bytes, wherea < 26 is the number of non-

row: itis the array oP!6 entries mapping the first equivalent sub-tries of height at most 8 on level 16,
16 bits of IP addresses to the suitable rownop and#pointer = (logy @)/8 is the number of bytes
(equivalently, they represent the children pointef@c0ding a pointer thop’s rows.
of DAG nodes on level 16). In the worst casehop occupies no more than

For example, with reference to layer 1 in Tal6 Mb androw needs 256 Kb (using 4-byte point-

ble IV, we obtain the lookup table shown iners) by Fact 1. This is actually a pessimistic esti-

Fig. 4. Here, we haveéy = 3 rows in hop. Put Mmate, since we only keep the sub-tries that rmoe
into simple words, for any IPv4 address = equivalent each other. What we can experimentally

z1.29.23.24, the next hop obtained by searchimg Observe is that our data-analysis driven choice for

into the trie compactly represented by the DAdayer 1 pays back in terms of space occupancy when
is that stored inhop|row[z;.z9], z3]. So, an IP compared to CDG.

lookup for z = 192.168.32.27 successfully stops In order to have a fair comparison with our

at layer 1 by returning the next hop which is scheme, we must add the space taken by the
located athop|row[192.168], 32]. Instead,z = lookup table adopted for layer 2. We report in

192.168.0.27 requires to continue the lookup inTable V the figures for several choices with router

layer 2 as it returns the dummy value 255 stored imest.attcanada (see Section II-A), where we com-
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pare several methods for storing the prefixes year 2003 of RIPE NCC, with the results for our

layer 2. CDG, array with binary search-way scheme being plotted on the bottom of Figure 5.

search (withk = 8 and k = 2n wheren is the  The net result for our scheme is a lookup table
number of prefixes), binary tries, and hybrid tries ifvhose space occupancy scales linearly with the
which the first three levels are indexed by individuglumber of prefixes (clearly, layer 1 alone scales as
bytes and the next 8 levels (at most) are indexed Qell; moreover, its maximum size is 16Mb). Fig. 6
individual bits. Indeed, a lookup in layer 2 surelyustrates this behavior for the available monthly
matches at least the first 24 bits by constructiognapshots of RIPE NNC, from October 1999 to
Lookup times measure the number of microsecongdgril 2004, with a number of prefixes ranging from
for running 100,000 lookups. 65841 (yieldinga = 1404) to 138201 (yielding
We computed similar tables with other snapshot&, = 3241). As it can be noted, layer 1 has a size
as it turns out that hybrid tries are the best trade-afinging in [9n...14n] bytes for n prefixes. For
between space and lookup time. Choosing hybritle sake of comparison, a straightforward storage
tries for storing prefixes in layer 2, we report in Taef these prefixes alone in a routing table would
ble VI the space improvement with respect to CD@quire 6n bytes. Namely, each prefix requires a
for the 12 benchmark tables listed in Section 1l4-byte word of memory; its prefix length and its
A. As we can see, the column corresponding toext hop need one byte each.
our scheme gives a quite stable occupancy in space

with respect to the routing table size (#prefixes).

This is better highlighted if we consider the entire ’ router ‘ #preﬁxes‘ CDG (Kb) ’ ours (Kb)‘
aads 32505 3706 1084

att 121711 2188 1822

east.attcanadg 127561 16418 1661

lookup Kb funet 41328 666 540

time total | layer 1| layer 2 mae-west 71319 4643 1290

CDG 7012 2022 | 1521 501 oregon-01 118190 9897 1596
Binary Search| 5221 | 1556 | 1521 | 35 oregon-03 142883 9026 2164
N pacbell 45184 3170 982

K Partition 5274 1556 | 1521 35 )

- paix 17766 2745 875

N Partition 5211 1608 | 1521 87 telstra 104096 8896 1490
Binary Trie 5758 1649 | 1521 128 telus 126687 11390 1724
Hybrid Trie 5297 1649 | 1521 128 west.attcanada 127576 16749 1664

TABLE V TABLE VI
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dim_anno_k.eps scale.eps

Fig. 5. Space occupancy of our scheme vs CDG fdfig. 6. Space occupancy of our scheme scales linearly with
RIPE NCC. The x-axis reports the 365 daily snapshots of yetable size. The x-axis reports the number of prefixes and the
2003 and the y-axis the occupied space in bytes. y-axis the number of bytes taken. Plotted points are bounded

by the two linear functiong'(n) = 9n andg(n) = 14n.

We computed this statistics also for all daily
snapshots of 2003 of RIPE NCC (see Section Ifeasonable (although not at a minimum). Simplic-
A), and the total size of our lookup table (using & and efficiency are the major features of our
hybrid trie for layer 2) is in the rang@n ... 16n], approach. We give three illustrative scenarios for
thus confirming the linearity of space also in thignplementing it, and more are possible by varying
case. the lookup scheme adopted for layer 2.

At this point, we may wonder whether more The first implementation uses SRAM with a
sophisticated technique can better exploit the propniprocessor, which is also the basis for our ex-
erties of the DAG in Fig. 3. For example, we could@eriments as it can be easily set up. We use hybrid
consider more cutlines and adaptive expansion @fes for storing the long prefixes in layer 2. The
sub-tries [1]. While we do not claim this as &ize of our scheme for layer 1 is comparable to
general rule, we believe that improving furthethe current size of caches<(1-2Mb) according
the space occupancy of our scheme can worsénour experiments. A random lookup accesses the
significantly the performance of lookup and updat@ble for layer 1 with nearly 99.8% hit ratio, so that
operations. As it would be clear in the rest of thBranch prediction works well for testing if lookup
paper, we want to update easily the data structuist go on querying layer 2. We report experimen-
while guaranteeing very fast lookup operations. Ol data on this implementation in Section III.

scheme is simple, very fast and keeps the spacelrhe second implementation uses a bi-processor.
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One processor’s cache holds layer 1 (the masterhose routing is mainly an intranet task. We
while the other processor’s cache holds the hybrabserved also here the middle-class effect on a
trie for layer 2 (the slave). Lookups are in paralledifferent scale. For our table, we have two cutlines
but the slave processor can be interrupted when the 24 and 48 bits and no prefixes are shorter
master processor succeeds (which happens in than 24. We can blend our scheme and CDG by
majority of cases). introducing an arraycol, and by reducing the
The third implementation is challenging as ihumber of columns imop with RLE in layer 1.
is purely hardware with a minimal requiremenPrefixes longer than 48 are stored in layer 2. For
for logics. We storerow into on-chip SRAM and an address lookup, we hash the first 24 bits to
hop into off-chip SRAM. We can preallocate thea suitable entry ofrow and the next 24 bits to
maximum size of both by Fact 1. We suggest suitable entry ofcol, which points to hop.
to use TCAM for layer 2, typically storing few If the returned hop is dummy, we perform the
long prefixes (less than 15% in our data set). THeokup in layer 2 as before. We increase the
expected size of the TCAM can be easily computatumber of memory accesses to 3 and require the
by performing statistics on the table prefixes long@omputation of two hash functions. So we expect
than or equal to 24 bits. Again lookup is in parallelhat our method is competitive also for IPv6
and can be implemented with negligible extra logiaddress lookup but we need more data to assess
for selecting the output from TCAMs, when thehis experimentally.
next hop in layer 1 is dummy (255 with our data).
We achieve one address lookup per clock cycle in lll. PERFORMINGLOOKUPS
this way. The improved space bounds described in Sec-
tion Il makes our scheme more stable to use with
E. Scaling to IPv6 respect to CDG. What about lookup time in IPv4?
Our solution has good chances tdVe recall that CDG requires 3 accesses in the worst
scale to IPv6 addressing. Although therease. We improve significantly this performance.
are not so many available data, som®e require just two accesses plus an access to
downloadable routing tables are published ilayer 2, the latter with very low hit ratio as we show
http://net-stats.ipv6.cselt.it/bgp . hext. As a result, our method is approximately 30%
Here the relevant address type is global unicasaster than CDG.
The first 64 bits are the most important ones for As previously mentioned, the lookup scheme is
backbone routing as the remaining 64 bits are feimple and requires trivial logic to be implemented

specifying an interface (e.g., a MAC addressalso in hardware. Assume that, for any given IP
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addressz = xy.x9.73.74, We have the variable
1x = x1.x2 storing the first 16 bits of andrx =
x3.x4 Storing the last 16 bits, so that= 1x.rx. We

use the right shift operator arx to get bytexs; and
| daily_cm-t.eps

O

to perform a lookup. If we get the dummy value 25

—

in layer 1, we need to perform a lookup also i

layer 2.

#define DUMMY 255
it ((h1 = hop[ row[lx], rx>>8 ]) '= DUMMY )

return hl; Fig. 7. Number of microseconds (on the y-axis) required
return lookup_layer2( Ix.rx ); by 1 million of lookups in CDG (top) and in our scheme
(bottom) using synthetic traffic. The x-axis reports the 365

We measured the running time of our method anfily snapshots of RIPE NCC 2003.

of CDG on the daily snapshots of RIPE NCC for
the year 2003. We employed the synthetic traffic

data for each individual snapshot as explained jg very low, so that branch prediction in the if-

Section Il-A. As it can be noted in Fig. 7, OUrgatement works fine by returning the next haop

lookups are definitively faster than those in CDG by layer 1. As a result, our scheme requires essen-
30%. This is consistent with the fact that we reduciga”y two memory accesses for the lookups. Note
the number of memory accesses from 310 2. yhat contrarily to the rest of the snapshots in our
It turns out that the role played by the dat@ata set, oregon-01 performs badly with our scheme
structures in layer 2 is rather limited in our datan the random data used in [9] (while it performs
set, except for one single case that we discuss nexgually with random data generated by us). Here is
We report the experimental data in Table VII foe clear example showing that the choice of a hybrid
the 12 benchmarks described in Section II-A. Weie as lookup mechanism in layer 2 is not enough
use both random and syntetic data. For randgpawerful. Indeed, there are many prefixes of length
data, the figures in italic correspond to randorpetween 28-32 and lookups in layer 2 match long
data employed in the experiments of [9], [12]. Therefixes, which is painful for trie searching.
columns hit-2 count how many hits our lookup |f we use CDG for layer 2, then we obtain an
made in layer 2. The other columns measure thgprovement. This shows that the apparently bad
running time in microseconds for 100,000 lookupsyerformance of our lookup scheme on oregon-01

We can observe that the hit ratio for layer 2 due to layer 2 and not to layer 1, which is
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quite stable and compact. As remarked before, iries, multi-level hashing, TCAMs, etc.). Again we
all other snapshots we observed a limited impabase our method on real data analysis to show
on the overall performance by the lookup methothat the great majority of updates involves layer 1,
adopted in layer 2. Nevertheless, this appears ramnsistently to what observed in the middle-class
to be the case for the snapshot oregon-01. effect. We also make our scheme more robust by
A similar situation may occur if some maliciousproviding a good, exact upper bound on the number
routing uses addresses that access layer 2 vefyentries changed in the lookup table in the worst
often. We can observe that the cache can adaaise.
to this skewed access nicely since the number of As described in Section II-D, we emplayop
routes in layer 2 is limited (see Section 1I-D) anénd row for layer 1. It is crucial to observe that
most of the data structure for layer 2 becomesp is stored inrow-major order. Since we adopt
resident in the cache. To alleviate this problem, wee maximum number of columns, 256, the only
can exploit the fact that we surely match the firsdmissible size change ip is to add or remove
24 address bits in layer 2. We suggest to use sommsvs. Performing this change on the columns would
cache-efficient trie for layer 2 (e.g., see [16]). result in a disaster, as the whalep would need to
We remark that we obtain a good performandee re-allocated dynamically, which can have a cost
in all other cases with just a hybrid trie on layer 2analogous to that of rebuilding. Here is why we opt
for keeping all the 256 columns. Experimentally
IV. PERFORMING UPDATES we observed that RLE on runs of equal next hops
We now describe one of the main effects ofvould reduce the number of columns by a negligi-
our simplification of the lookup scheme. We showle value only at the price of reconstruction. So we
how to handle efficiently the updates of the lookuprefer to have fast update and waste a bit of space.
table when announcements and withdrawals @his also guarantees a high level of concurrent
routes arrives on the fly. We do not to rebuilc&ccess to our lookup table during its lifetime.
the lookup table from scratch. Instead, we combine We assume realistically that the prefixes in route
the best features of fast lookup using arrays witnnouncements and withdrawals are of length at
the flexibility of dynamically linked data structuredeast 8 (they can be shorter in case of heavy network
while avoiding their drawbacks (rebuilding andailures, but then updating a routing table is a minor
slow lookup time, respectively). problem...). We also assume that there are at most
We describe how to use our method (see Set27 distinct next hop values in layer 1. We reserve
tion II-D) by assuming that some reasonably effthe most significant bit in each entry abp for

cient method has been adopted for layer 2 (e.gnarking it as dummy; note that we do not use
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B,| motivating our choice to build layer 1 on the

first 24 bits. We suggest therefore to use a well-
tuned trie in layer 2, as its update cost does not
influence significantly the overall performance of

update_layer2.eps _ _
announcements and withdrawals in a router.

B.| Handling announcements and withdrawals

We show how to process efficiently announce-

ments and withdrawals that are produced during the
Fig. 8. On the y-axis, percentage of daily updates (less thgr)l(ecuuon of the border gateway protocol (BGP).
0.7%) involving layer 2 for RIPE NCC. The x-axis reports th&/Vheén an announcements arrives, we have to insert
365 daily snapshots of year 2003. a certain prefiyp with its associated prefix length

and next hopy,, into layer 1. Recall thag <, <

32 by our assumptions. We distinguish among three

anymore the dummy value of 255 as in Section Ii5, iy cases for describing the worst-case effect of

D. Masking this bit yields the correct next NORyg jnsertion onrow andhop, illustrating them by

value. If more values than 127 are needed, WRing the example of layer 1 in Table IV and its

suggest to add 32 bytes at the end of each QW ciated arraysow and hop shown in Fig. 4.

of hop for storing these mark bits. If more thanyye i discuss how to determine which entries
256 next hops are needed, we suggest to Sim@%ange in Section IV-D.)

allocate two bytes per entry afow. 1) Casel, < 16: sincel, > 8, we have to

change no more tha2b6 entries inrow. However,
A. Further data analysis each of them could change up #56 entries in
We performed data analysis on the update tracksp. The worst case is therefore that of changing
for RIPE NCC. We collected the huge number a#56 +2'¢ entries. In practice, the number of entries
all the announcements and withdrawals availabie much smaller. In our example, if we announce
for year 2003 (see Section 1I-A). We report irroute p = 192.0.0.0 with prefix lengthl, = 8
Fig.8 the percentage of daily updates involvingnd next hoph, = 6, we change the entries in
layer 2. Note that the maximum percentage is lessw[192.0...192.255] exceptrow[192.168]. They
then 0.7%, with almost all values below 0.1%all point to a new row inhop that is made up
This confirms once again the middle-class effecf all 6s. Note that we cannot create many such

that we observed on routing tables in Section IFows as the number of distinct hop values is limited
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(to 127 in our case). In the row dfop pointed using 255 as dummy would also cause an insertion
by row[192.168], we replace its right half of)ls into layer 2 0f192.168.128.12/24 with next hop?7.
with 6s. This is the situation that can be replicatedihis is a problem since we can change many entries
over many rows, and that may cause the worst-casecase 1, and this change can reflect on layer 2
behavior, which we can bound as above. as well. Our solution of using the most significant
2) Casel6 < [, < 24: here is the most frequentbit is just straight since we do not insert anymore
case according to the middle-class effect. We malye first 24 bits of longer prefixes into layer 2 as
change one entry afow to point from one row of previously illustrated in Table IV. This guarantees
hop to another, since the insertion pfrequires to that an update falling into cases 1-2 does not
change some entries of the row previously pointgatopagate to layer 2 as a side effect.
in that entry ofrow. We may require to add a new Since we adopt a different encoding for dummy
o values, we need to change slightly the lookup
row when none of the existing ones match th'ﬁrocedure.
change. In the worst case, we change no more than

#define MSBIT 0x80
1 4 256 entries. Going on in our example, if Wegefine NO ROUTE TO HOST 0

if (! ((h1 = hop[ row[lx], rx>>8 ]) & MSBIT) )

return hi;
h, = 7, we modify the row ofhop pointed by it ( (h2 = lookup_layer2( Ix.rx )) = NO_ROUTE_TO_HOST )

row[192.168], so that the 16 entries starting from "éum h2:
return hl & "MSBIT;

position 128 change from6s to 7s. Note that we

announce routep = 192.168.128, [, = 20, and

do not need to create a new row as there is onlylf a lookup in layer 2 returns no-route-to-host,
one entry pointing. We should therefore know howhen we must return the next hop value (with its
many entries inrow point a given row ofhop to most significant bit cleaned) previously computed
this end. in layer 1. Although it may appear that we are
3) Casel, > 24: We may change one entry inworsening the performance of the original lookup
row and one inhop; however, the latter changealgorithm in Section Ill, we observe that the hit
may cause the creation of a new row liap as ratio for the first if-statement is very high and deter-
discussed in case 2. Continuing our example, rfines the real lookup cost, which stays unchanged
we announce routp = 192.168.128.12, [, = 26, according to the experimental evaluation discussed
and h, = 8, we just have to change entry 128n Section llI
in the row of hop pointed byrow[192.168]. Its Withdrawals have an effect omow and hop
value changes frort to 128 + 7 (we set the most similar to announcements, except that we have to
significant bit to 1 for marking it as dummy), andhandle “hidden” prefixes. When we delete a prefix,

we must insertp, [,, hp into layer 2. Note that we should find the “parent” of that prefix and
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propagate its next hop downward to replace thér is that updates are of bounded cost in layer 1,
of the deleted prefix. For example, starting froralso in the worst case. This cost scales well with the
Fig. 4, the withdrawal of routel92.168.0.0/18 number of updates and prefixes stored in layer 1.

from layer 1 in Table IV, causes the propagation Fact 2: In the worst case the announcement or

of the next hop 2 (in place of 3) since it a‘SSOC'"’Itev(\j/ithdrawal of an IPv4 route changes at most 256

with the shorter prefix 92.168.0.0/17. entries inrow and at mos2!¢ entries inhop in

As a result we add or remove one row at most ifase 1. The number of changed entrieshisp

hop. Removed rows are linked in a free list that cagcomes256 in cases 2 and 3. In all cases. the

be reused for adding rows. This does not change g nirical average number of changed entries is

lookup procedure and its cost. nearly 1.

Since the main cost is given by the number
of entries changed imow and hop, we computed
statistics to account for this cost, classifying it
according to cases 1-3 (both for announcemerts ~. - et access

and withdrawals).

We processed the peak of Oct. 25-26, 2003,

We have seen that, although rare, an update
in router RIPE NCC. Table VIII shows that ap- .
may change thousands of entries. Should we stop

roximately 99.3% of the updates fall into case 2. . . i
P y ’ P performing lookups meanwhile? Fortunately it is

Roughly half of them involve a prefix len = . . .
gnly P oty not so, as concurrent access is possible. It suffices

24, and so they change just one entryhisp. Actu- . . .
y gel yhiop that, when a row is created ihop, the pointer

ally, the average number of changed entriesdi . . .
y g g in row is changed after that the row is correctly

andhop is nearly 1. For case 1, the most expensiv . .
P y P fﬁled. In this way, any lookup either accesses an

one, the variance is high for a small number of
g entry of hop before or after the update, but not

updates while the rest of updates does not change. . . S
uring it! Concurrent access is possible in limited
any row of hop. On Oct. 25, just 1495 updates . .
y P J P form also among updates, if they work on different

changed entriesow andhop; on Oct. 26, they were
g o °p y rows of hop. We can safely guarantee the lookup

1889. These few updates changed between 100 ?nd . . . .
unctionality of our scheme while updating; so

1000 entries; we found a single example in whic
g P tme cost of the update can be spread among a

there were 20,985 changed entries, approaching the ) _
g PP g sequence of lookups without freezing the router for

worst case. . :
this reason (except for memory contention due to

The net result of the case analysis discussed simultaneous access).
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D. Auxiliary data structures for dynamic lookupdo.
table
V. CONSTRUCTION OF THE LOOKUP TABLE

We need to identify which entries change in ar- The construction of our table consists in building
raysrow andhop in order to handle announcementg, trie and then obtaining the DAG depicted in
and withdrawals. There are several possibilities f(pfig_ 3. It is worth noting that we suggest to insert
this. We assume that the bookkeeping informatiqRe prefixes (truncated at 24 bits) into the trie in
is maintained elsewhere (e.g., see [2]) and does Rpker of nondecreasing prefix lengthf we do not
interfere with the caching and prefetching of lookugyiow this pattern, we have to propagate downward
data inrow andhop. We propose one solution thakhe next hop of the currently inserted prefix. That
seems reasonable to us. It makes use of a countehye change the next hop to already created nodes.
for each row ofhop for counting how many entries it e follow the above pattern instead, we have to
of row point to it. It also uses a hashing table foéssign the next hop only to newly created nodes and
detecting equivalent sub-tries of height at most g happens once per node. This also gives a better
on level 16, as they give rise to equal rowshisp.  performance in the worst case. For our tables, the
We propose to use fingerprints as hash functiongost time consuming construction was for oregon-

as they can be incrementally recomputed when ondg in 365 milliseconds. Note that, since we can

few entries change in a row. quickly handle updates, the construction time is less

We also need auxiliary data structures also famportant than in static lookup tables.

quickly locating “hidden” prefixes. For example,

in Table 1V, prefix 192.168.0.0/17 is hidden VI. RELATED WORK
by 192.168.0.0/18 and192.168.64.0/18 . Several approaches have been proposed in the
However, if we withdraw 192.168.0.0/18 , last few years for the IP lookup problem. The

then we must activatel92.168.0.0/17 and survey in [1] describes the state of the art up to
propagate its next hop. Another case is when twaD01, where CDG is shown to be an order of
prefixes with the same next hop are one prefix ofiagnitude faster than its competitors. Since we
the other. If the shorter is deleted, then the longénprove over CDG, we claim that our method has
emerges. We to keep in a separate memory the DAGgood performance by transitivity. More recent
in Fig. 3 with the notable difference that isomorphigvork is surveyed in [9] where recursive multibit

are collapsed, instead of equivalent ones. Indeddes (retries) are presented,which can be applied
equivalent sub-tries are not able to discriminate tledso to network clustering and telephone service

situation mentioned above while isomorphic onasarketing. We can obtain an indirect comparison
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with the retrie. To our knowledge, it is the most[8] Pierluigi Crescenzi, Leandro Dardini, and Roberto

recent result that compares favorably with CDG Grossi, “IP address lookup made fast and simple,” in
Proceedings of the 7th Annual European Symposium on
Algorithms 1999, pp. 65-76.

Improvement, which is mOStIy 30is based on dy'[9] Adam L. Buchsbaum, Glenn S. Fowler, Balachannder

namic programming and appears not to support Kirishnamurthy, Kiem-Phong Vo, and Jia Wang, “Fast

for the IP lookup problem. It attains a variable

d prefix matching of bounded strings,J. Exp. Algorith-
mics vol. 8, pp. 1-3, 2003.

quick updates. Other recent approaches are base

on Bloom filtersg [2], multple hashing [17], strat- , o
[10] L. Rizzo, “Personal communication,” 2003.

ified trees [12], pipelined tries [18], [19], biasec{11] Geoffrey Goodell, William Aiello, Timothy Griffin, John
skip lists [20], just to name a few. Several of them  loannidis, Patrick McDaniel, and Aviel Rubin, “Working
support updates and have small space requirements. around bgp: An incremental approach to improving secu-

rity and accuracy of interdomain routing,” Proceedings

It would be interesting to make a comparison with of Network and Distributed System Security Sympasium

these methods, since our scheme does not require san Diego, CA, February 2003.

bit manipula’[ion and hashing and makes two p|a[ﬁ|2] Marco Pellegrini and Giordano Fusco, “Efficient ip table
memory accesses most of the time. lookup via adaptive stratified trees with selective recon-
structions,” in12th European Symposium on Algorithms
2004, pp. 24-35.
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2001, pp. 1444-1453. cDG | ours| hit2 || cDG | ours| hit2
RIPE NCC 10936 | 5922 | 1136 || 6970 | 4106 | 1074
aads 7276 | 5903 | 5463 | 7452 | 4775 | 4820
att 12605 | 7351 15 || 7872 | 4941 16
east.attcanada| 15096 | 8429 | 3220 | 9164 | 5450 | 3116
funet 3130 | 2461 88 || 5036 | 2783 67
mae-west 7217 | 5916 | 2385 || 7425 | 4565 | 2401
oregon-01 7740 | 9933 | 11693 || 7265 | 6654 | 10651
oregon-03 14262 | 9529 | 3565 | 8790 | 6023 | 3525
pacbell 6126 | 5078 | 3899 | 6584 | 4233 | 3458
paix 6306 | 5522 | 9683 | 6934 | 4682 | 8703
telstra 8468 | 7544 | 3899 || 7966 | 5317 | 3690
telus 14011 | 8177 | 2095 | 8630 | 5279 | 2228
west.attcanada] 15071 | 8353 | 3277 || 9167 | 5350 | 3050

TABLE VII

‘ date H #announce| #withdraw H case 1‘ case 2‘ case 3‘

10-25-04 || 20459780 139787 0.68% | 99.31% | 0.01%
10-26-04 | 11538757 144937 0.67% | 99.30% | 0.03%

TABLE VI
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