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Abstract— We consider the problem of fast IP address to the packet. As routers have to deal with links whose
lookup in the forwarding engines of Internet routers. Many  speed constantly improves, the address lookup is consid-
hardware and software solutions available in the literatue  ered one of the major bottlenecks in high performance
solve a more general problem on strings, the longest foyarding engines [1], [2]. Other bottlenecks, such as
prefix match. These solutions are then specialized on real those involved by fair queueing policy and IP switching
IPv4/IPv6 addresses to work well on the specific IP lookup

technology, are well understood and handled [3].

problem. We propose to go the other way around. We first . .
analyze over 2400 public snapshots of routing tables col- 1he IP address lookup problem was just considered

lected over five years, discovering what we call theniddlee @ simple table lookup problem at the beginning of

class effect of those routes. We then exploit this effect for Internet. In the early 1990s, people realized that rout-

tailoring a simple solution to the IP lookup scheme, taking ing information would grow enormously and introduced

advantage of the skewed distribution of Internet addresses classless inter-domain routing (CIDR) for reducing space

?n routing 'Fables. Our algorithmic solu.tio.n is easy to by dividing networks into prefixes [4]. In IPv4 [5] the

'tg"pfrr;ﬁrr:ir:n ha(d\(/j\{aretor software as Itltls tar}tamount prefixes are binary strings of variable length using the
P g an incirect Memory access. 1s periormance syntax X.Y.W.Z/L to represent the firsL bits of the

can be bounded tightly in the worst case and has very i
low memory dependence (e.g., just one memory access -byte wordX.Y.W.Z, wheres8 < L < 32. Prefixes can

to off-chip memory in the hardware implementation). It Pe up to 128 bits in IPv6 [6] (but then have a different
can quickly handle route announcements and withdrawals Syntax). More realistically, we can assume prefix lengths
on the fly, with a small cost which scales well with the up to 64 bits in IPv6 global unicast addressing [7], since
number of routes. Concurrent access is permitted during the first 64 bits are crucial for backbone routing while the
these updates. Our ideas may be helpful for attaining state- |ast 64 bits are for subnet routing, e.g. MAC addresses.
of-art link speed ar_1d may contribute to setting upagener_al The use of prefixes increases the complexity of the
framework for designing lookup methods by data analysis. IP address lookup problem. For each packet, more than
one prefix in the routing table can match the packet's
Index Terms—System design, IP lookup algorithms, |P address. In this case, the adopted rule is to take the

data analysis, forwarding engines, routing tables. longest matching prefixGiven prefixespi, ps, . . ., pn,
for any binary stringe we want to identify the longest;
I. INTRODUCTION that equals the first bits ok, wherel < i < n.

The IP lookup problem is a recurrent problem iffor e€xample, let's consider the prefixes in Table I.
the literature for packet forwarding in the Internet [1]BOth prefixes 192.168.0.0/17 and 192.168.0.0/18 match
Routers have to forward lots of packets from inpl}{‘e IP address 192.168.128.125; hence, the packet is
interfaces to output interfacemdxt hops based on forwarded to next ho. We will only consider situations
packet's destination Internet address, callediRrad- arising with single hops, since dealing with multihops is
dress Forwarding a packet requires an IP addieskup Very similar. No-route-to-host is the special next hop 0

at the routing tabfeto select the next hop correspondingssociated with the empty prefix o
Looking for the longest matching prefix in tables of

.|IS_t'tUt0N di |Inf0fm§tllfa eR. Te{fma“cé‘élogNRp- - Cl?nl-high—performance routers is a challenging problem. For
siglio azionale elle Icercne, 1SQ, al . . : :
(filippo.geraci@iit.cnr.it ). Part of this work was hetworks with a link speed of 10 glgablt§ _per second
supported by the Italian CNR. (OC-192), they need to forward up to 33 million packets

Dipartimento di Informatica, Universitdi Pisa, 56125 Pisa, ltaly per second, assuming that each packet is 40 bytes long. A
(QVOSS'@O:C'-U“'P'-“ ) d)- \é\’ork SUPforted)'” part by the ltalian general solution to the longest prefix matching problem
Ministry of Research and Education (MIUR). . . . .

We will use the term “routing table” to denote what is more(l‘_PM) Is not the b?St choice, since it als_o has to d_eal
properly called a “forwarding table.” An actual routing table contain®/ith €xtreme situations that do not occur in real routing

some additional information.



tables. Thus, the resulting algorithms are more involved CDG is too high, possibly causing its performance to
than a simple table lookup. The IP lookup problem isuffer in the worst case.
more peculiar than LPM, because the prefixes stored inin this paper we present a lookup scheme that exploits
the routing tables are not random strings. In this papére original idea of CDG in a novel and even simpler
we stress the importance of data analysis on real routwgy. We bring to light further properties that allow us to
tables before designing IP lookup algorithms. (We doavoid its drawbacks. The main discovery is what we call
not consider real traffic analysis due to the difficulty ithe middle-class effedn real routing tables: even though
obtaining public databases for privacy reasons.) the majority of prefixes have lengths ranging from 16
The results in previous work mentioned in Section Mb 24, they tend to follow regular patterns. In other
describe the IP address lookup problem in the genevabrds, we have a good chance to store the mapping from
terms of LPM. They first discuss how to solve its generall the 232 IP addresses to the next hops into a compact
form efficiently; then they present experiments to turtable, so that lookup and update are able to access the
the performance of the proposed solutions when applible very quickly using indirection. Some of the basic
to the specific IP address lookup problem on real routimpgoperties that we distill have been implicitly used in
tables. Again, we follow the opposite direction in hopesome of the previous work to optimize the performance
of gaining more insight into the problem. We begin witlof the proposed solutions. We go the other way around,
the experimental analysis performed on public databasesl design our method using solid data analysis.
of nearly 2400 snapshots of routing tables collected overThe main contributions of our paper on exploring the
five years. We identify some new parameters charatata analysis can be summarized as follows. First, we
terizing the (skewed) distribution of prefixes in routingave space significantly over CDG since we have a much
tables. Based upon our findings, we provide a new ambre stable space occupancy that scales linearly with the
simple solution to the IP address lookup problem thtdble size (e.g., see Fig. 5). We no longer need the run-
circumvents several difficulties posed by the generalitgngth encoding (RLE) adopted in CDG, because we or-
of LPM. ganize suitably the prefixes. Second, we improve lookup
Our starting point is the preliminary result based otime by nearly 30% (e.g., see Fig. 7). Third, we can
full expansion and compression of routing tables hyynamize the table, performing updates quickly without
Crescenzi, Dardini and Grossi [8]. (It was later referregbuilding the whole structure as previously required.
to as CDG in [9].) To our knowledge CDG is the first ta€Concurrent access is also permitted while updating.
describe a lookup scheme whose design is fully driven byWe think that these contributions are due to the
data analysis. A frequently cited survey [1] published isimplicity of our scheme (see Fig.4), whose efficiency
2001 shows that CDG is almost an order of magnitude validated by our data analysis. Not only do we reduce
faster than its state-of-the-art competitors at that tingpace occupancy and make it linearly scalable with the
(see Table 3in [1]). Even in the worst case, the frequensize of routing tables, we also improve lookup time
of lookups with small response time is impressively highnd obtain a fast and scalable update algorithm for
and does not depend on the traffic through the router (sgporting announcements and withdrawals. Our update
Fig. 22 in [1]). algorithm is robust since we can efficiently bound the
Unfortunately, CDG has some drawbacks. The surveyorst case, which is important for unauthenticated an-
reports that “Schemes using multibit tries and compreseuncements [12].
sion give very fast search times. However compressionOur solution is algorithmic in nature and can be im-
and the leaf pushing technique used do not allow iptemented in hardware or software. Available solutions
cremental updates. Rebuilding the whole structure is thesume processors that make use of fast static random
only solution.” Moreover, some authors [9], [10], [11}access memories (SRAMS) or ternary content address-
pointed out some cases in which the space requiremabte memories (TCAMs). We can use both technologies
in our lookup scheme, and refer the reader to [2] for
a recent discussion on their advantages and drawbacks.
. We also attain high throughput by running our lookup
prefix hop )
192.168.64.0/18 5 scheme on a standard PC. We believe that performance
4
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prefix
65.10.10.0/24
192.168.0.0/17
192.168.0.0/18

192.168.0.0/32 will greatly improve by integrating our scheme to exploit
192.168.0.0/29 the aforementioned technologies to obtain an embedded
system for forwarding packets.

TABLE | Space is not the main issue; more space-efficient
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solutions for lookup tables can be found in the literature, '
but they either have slower access or are difficult to
update. Our space occupancy fits current technology, I
as it requires 1-2Mb of fast memory. We also assert °f
preliminary performance for IPv6 routing tables. Our | f %H
findings on data analysis can be exploited with other IP il %ﬁgﬁj@m it ﬁﬁ@ﬁ}g%a{iﬁ T@jgg i
lookup methods to improve their performance. Indeed, *
some of them make implicit use of the data distribution
in routing tables. Clearly, our scheme can also be used
to solve the general problem of the longest prefix match. ** |
However, we do not claim that its performance is as good
as in the case of the specific IP lookup problem.

The paper is organized as follows. We illustrate our " 50
approach by taking a glimpse into our data analysis
in Section Il. We show how to perform lookups infig. 1. Millions of daily announcements (top) and of daily

. . . withdrawals (bottom) for RIPE NCC, in logarithmic scale on the
Section Il and updates with announcements and Wltﬁ'- ( ) g

i ) ) i -axis. The x-axis reports the 365 days in year 2003.
drawals in Section IV. We describe the construction of
our lookup table in Section V. We conclude with a

reference to state-of-the-art methods in Section VI.
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from public databases, collected over a period ranging

1. from 1998 to 2004. The major source is located at
. . . . ftp.merit.edu/ipma/routing_table , the In-

In_ this_section, we describe our data analy_5|s Qrnet Performance Measurement and Analysis (IPMA)

routing tables to highlight a useful property of middle: roject (currently dismissed). We also collected all

clasg prefixe_s (whose length ranges from 16 to 24). gily data for year 2003, plus some monthly snapshots,
call it the middle-class effectlt allows us to reduce rom data.ris.ripe.net the Network Coordina-
both space occupancy and Iookup_ time while eﬁiCiem[Yon Centre of the Bseaux IF; Eurgens (RIPE NCC),
dynamizing the lookup table. While we do not Claln?outer of Amsterdam. We report the figures in Table II.

to be the first to have exploited this effect, our study Some authors singled out individual snapshots that

explicitly stresses its importance in designing IP Iookugause the worst-case behavior of CDG in terms of space
tables. We first describe the large data set that

loved f blic datab ¢ ting tables f 8cupancy; hence, they are good benchmarks for our
employed Trom public databases of routing 1ables Tofaqq a5 well. Most of these tables have been employed
IPv4 in Section II-A. We illustrate the middle-class eﬂ‘eclth

in Section II-B. showina how & loit it f W the experiments [9], [13]. The remaining ones were
:n ection - p S pwglg i owlloce>l<3p ol dl Ortr? I E[)t- sent to us [10]. We list them in Table III.
ayer organization in Section 1i-+.. based on the ‘alter, ¢ ¢ 1he updates, we collecteall the announce-

we describe an implementation of IP lookup tables_'rrﬁents and withdrawals available for the entire year 2003

222:22 IIII-_IE. We suggest how to scale it to IPv6 on RIPE NC_C. In Fig.l_, we p!ot their numb_er in millions
' (on the y-axis) on a daily basis (on the x-axis). As we can
see, the number of withdrawals is an order of magnitude
smaller than the number of announcements. On the
We base our analysis on an extensive data setfferage, there is approximately one announcement per
more than 2400 snapshots of routing tables availajgcond; clearly, they arrive in bursts. For example, note

DATA ANALYSIS OF ROUTING TABLES

A. Databases and experimental platforms

[ router [ #snapshoty from | to |
aads 538 | 10-01-00| 05-15-02 [ router | date | router | date |
mae-east 230 | 10-01-00| 06-01-01 aads 05-30-01 || oregon-03 07-10-03
mae-west 618 | 10-01-99| 04-12-02 att 07-10-03 || pacbell 05-30-03
paix 78 | 10-01-01| 03-10-02 east.attcanada 07-10-03 || paix 05-30-01
pacbell 576 | 12-09-98 | 05-15-02 funet 10-30-97 || telstra 03-31-01
ripe-ncc 365 | 01-01-03| 12-01-03 mae-west 05-30-01 || telus 07-10-03
ripe-ncc 19 | 10-10-99 | 04-01-04 oregon-01 03-31-01|| west.attcanada 07-10-03
TABLE I TABLE Il
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the peak of more than 20 million updates on Oct 25—
26, 2003. We will use this particular peak for intense
benchmarking in Section IV.

As for the lookups, we could not find publicly avail-
able traffic traces (for privacy resasons). We instead
use random data from previous work [9], as well as
synthetic data. We obtain the latter by extending the |
approach in [14] to generate traffic data according to the | ‘
distribution of the prefixes of any given routing taldle r | ‘ \

To begin with, letS be a stack whose positions are |1 :
numbered, 3, . . ., starting from the top. When we push (N o
an item intoS, the item gets positiod and the remaining "[ " H | M |
ones are shifted to positiors 4, etc. When we extract ‘o w0 w00 o0 00 so0 o000
an item at positiori from .S, we shift items in positions

1 1.i4+92 .. .so that thev occu ositiorisi + 1, etc. Fig. 2. The nymber of middle-class _prefixes of RI_PE NCC is shown
et Lot y by P st on on the y-axis (log scale). The x-axis reports 2h&intervals of the

We generate traffic data using talife stackss, and a address space, each interval associated with a distinct configuration
conditional probabilityd < p < 1 (we setp = 0.9 in our of the first 16 bits in the addressing. Each vertical bar counts how
experiments). The first IP address is chosen uniformlyagny prefixes fall within the corresponding interval.
random and is pushed into an emptyWe then generate
the remaining IP addresses one by one according the
following steps: B. Distilling the middle-class effect in routing tables

1) We choose a nonempty item from the statksuch
that the item in position is picked with probability2—7, In order to illustrate our ideas, let's consider any
for j = 2,3, ...;if we succeed, we output that item. (Thigouting table7. We then choose the snapshot of the
happens with probability nearly/2 for a sufficiently RIPE NCC router taken on April 1st, 2004, containing
large stack.) 138201 prefixes. Note that analogous properties also

2) If no item is chosen in step 1 (again, occurring withold for the router snapshots in the data set described
probability nearlyl /2), we toss a biased coin (heads witfin Section 1I-A. What is widely known is the skewed

probability p and tails with probabilityl — p) and consult distribution of prefixes from length 1 to 32 ifi. Indeed,
the following: 98% of the prefix lengths are in the intervab. . . 24],

2.a—Heads: choose a prefix froffi, uniformly at which we call middle-class prefixes. We therefore focus
random, pad it with random bits to obtain a length d¥n these prefixes, looking for more insight on their

100 | ‘

32 bits, and output it. distribution. N
2.b—Tails: output a random IP address uniformly at We take the address spafte .. 2% — 1] partitioned
random. into equal intervals of size'%, each interval correspond-

In all cases, we push the output address onto the g to a distinct configuration of the first 16 address

of the stackS, and we extract its copy (if any) frord. bits. For each interval, we count how many middle-class
prefixes ofI" have their first 16 bits corresponding to that

interval. Fig.2 shows the resulting frequency of prefixes

in these intervals. We obtain a skewed distribution, and

this skew is typically a good sign for compressing data

For our experiments we employed two platforms. Thgvhereas a uniform distribution is bad in this sense).

first is based on an AMD Athlon XP 1900+ (1.6GHz), However, we can get further insight by examining the
256Mb RAM DDR at 133Mhz, 256Kb L2 cache, 128KHrie storing all the prefixes ifi" (see [15] for a definition
L1 cache (64 Kb data and 64Kb instructions) runningf tries). The nodes of the tries are labelled with the next
Linux kernel 2.4.22. The second is an Intel Pentium Hops according to prefixes ifi. Some nodes are also
(2Ghz), 512Mb RAM DDR at 133Mhz, 512Kb L2 cachemarked to record the fact that the path from the roai to
We plan to extend the experimentation to more plastores a prefix of the table.
forms (e.g., those based on the PowerPC). We usedVe can draw two cutlines on the trie, at levels 16
gettimeofday  for timings. Since the results are sim-and 24. We obtain a set of at masf sub-tries of height
ilar, we will report only experimental data for the firsho more thanh = 8. (We recall that the height is the
platform. numbering of levels in a trie, starting frodfor the root.)



In order to analyze their common properties, we needtend the above argument for isomorphic sub-tries to
to recall some terminology. Two tries aisomorphic random sequences made up of 256 next hops.

if they have the same shape, the same labels, and thEortunately, we observe what we call tiéddle-class
same marks on the nodes. Formally, two nodeand effectin real routing table§” when we build the trie on

v are isomorphic « ~ wv) if they are both null, or the prefixes inl"

the fOIIOWing conditions hOIdlabel(u) = label(v), Many sub-tries of he|gh§ & on level16 are
mark(u) = mark(v), left(u) ~ left(v), andright(u) ~ equivalent with lots of repetitions, and they
right(v). Hence, two tries are isomorphic if and only if  store the great majority of prefixes if.

their rootsu and v satisfyu ~ v. Note that we exploit So there is a good chance to store fewer tidfh

this property in Section IV for keeping an auxiliary dat%ub-tries by keeping just one representative for each

structure for processing announcements and W'thdraw%lauivalence class. Even though the majority of prefixes

For'random data, we do not expect to find isgmorphg:re middle-class (98% in odF), they do follow regular
sub-tries. There are at lea®t’® sub-tries of height at

] > ) patterns in the routing table.
most 8, since the numbey, of binary ;[rees of height * s fact is reinforced by observing that the empirical
h > 0 is the solution to recurrendg, = b; _, +bp_1(1+

_ ! probability of finding that two consecutive sub-tries
V4bp—1 —3) as shown in [16], from which we cang a eqyivalent is high, when scanning the sub-tries on

300 _
computeby, > 2”7 for i = 8. If we account for the o e 16 in left-to-right order. For example in our talile
fact that our sub-tries have nodes labeled, the numbeyis o 4re 13834 nonempty sub-tries of height at most 8

even larger. Hence g&? probability that two sub-tries agg, eve| 16. We obtain just 5954 of them after removing
;]somor1|%h|c,ph< L/2°%, ']:5 very near to zlero. we Caﬂa sub-trie if it is equivalent to its predecessor in a

ave2™ such sub-tries for a routing table. Hence they o right scan (as we do during table construction).
probability thatno two sub-tries are isomorphic is VeryAmong these, we are left with 3241 representatives of

. - 216 ~ ;
near to one, i.e.(1 p). ~ 1. ) _equivalence classes. These are not random data at all!
For IP lookups, we instead consider a weaker notion

which is more relevant in our case. Given a trie of
heighth, let's expand it to its complete form (also called: Two-layer approach
prefix expansion) so that all the leaves are on the samd-ollowing what claimed in the middle-class effect, we
level. Nodes are still labeled and marked according to than transform the trie built on prefixesh We illustrate
prefixes inT", except that they are now part of a completeur approach by referring té&' (shown in Table ). We
trie (which explictly represent all possibl2"® binary first select only the prefixes of length up to 24 bits and
strings of lengthh). Note that each string is associatethe first 24 bits of longer prefixes, associating the dummy
with its correct next hop when seen as part of an Iext hop with them. (We use the value of 255 in our
address. experiments.) They form what we cédlyer 1 The set of
We say that two tries of heightt are equivalent if remaining prefixes (with more than 24 bits) is augmented
the sequence of next hops in the leaves of the form®y taking their first 24 bits and associating with them
is identical to that of the latter, when scanned in lefthe suitable next hop inherited from layer 1. All of these
to-right order. In other words, when a lookup with prefixes formlayer 2 Table IV shows an example. Note
bits is performed on two equivalent tries, the next hopbat “dummy” prefixes of length 24 in layer 1 correspond
thus returned make them indistinguishable. Note that tw@ prefixes of length 24 with the correct next hop in
isomorphic tries are equivalent while the reverse is niatyer 2. The number of such dummy prefixes cannot be
necessarily true, since different combinations of shaplesger than the number of prefixes longer than 24.
and labels/marks can yield the same sequence of nextVe then build a trie on the prefixes on layer 1 alone
hops.
We are therefore interested in selecting one represen-
tative for each class of equivalent tries. In our cas

layer 1 layer 2

v thi lection t b-tri f heiaht at t;’65.10.10.0/24 1 192.168.0.0/24 3
we apply this selection to sub-tries ol height at most S7g5 765 5 o717 2 | 192.168.0.0/32 4
obtam_ed from the gutllnes on Ieve_Is 16 and 24 (corr‘::192_168_0.0/18 3 192.168.0.0/29 5
sponding to the middle-class prefixes). How many of195 16864.0/18 2

them are equivalent? For random data, we expect thafg2 168.0.0/24 255
there are no equivalent sub-tries as the probability of
finding two equivalent sub-tries is negligible. We can TABLE IV
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row 01... 10...63 64...127 128..255

0.0 3
o1 ,j oo...o...oo...oo...o\
w NN 65. 10 00...1...00...0 O0... o\
AJ \2553...3...32...20...0\
— = A Q 192. 168 hop
24 SN N A 255. 255 | /]

Fig. 4. The arraysow andhop for the prefixes in layer 1 shown
in Table IV. No-route-to-host is the empty prefix with next hop 0.

Fig. 3. Left: a trie for the prefixes ifi’. Right: the corresponding

DAG in which the equivalent sub-tries of height at most 8 on level 16

are collapsed for the prefixes in layer 1. havea = 3 rows inhop. Put into simple words, for any
IPv4 address: = x1.x9.23.24, the next hop obtained by

, : : hing forz into the trie compactly represented by
b-t of height at most 8 gfc - 'nd .
and collapse equivalent sub-tries g the DAG is that stored imop|row[z;.x2], z3]. SO, an

level 16, so as to form a direct acyclic graph (DAG),

shown in Fig. 3. This graph gives a sufficiently goog lookup forz = 192.168.32.27 successfully stops at

compression of the information stored in a routing tabl yer 1 by returning the next hop, which is located
af hop[row[192.168], 32]. Instead,z = 192.168.0.27

ﬁjm\,\t/)irsvr\]/s:: rseese,ezr:ioptrﬁéizzsiniTalae);elr 2 are small Irequires a lookup in layer 2, since it returns the dummy
P yer & value 255 stored ihop|row[192.168], 0].
N _ Before discussing the experimental analysis on the
D. Lookup tables exploiting the middle-class effect  |5okup in Section 111, we first assess the space occupancy
We now describe a simple, but powerful, lookupf our scheme in the rest of this section.
scheme based on the middle-class effect described iFact 1: Layer 1 occupiesy x 256 + 216 . #pointer
Section II-B and on the two-layer organization proposdsytes, wherei < 2'6 is the number of non-equivalent
in Section II-C. sub-tries of height at most 8 on level 16, adointer >
Given our routing tabl€’, we build two lookup tables (log, &)/8 is the number of bytes encoding a pointer to
for its prefixes. The first table stores the prefixes @op’s rows.
layer 1 while the second table stores the prefixes ofin the worst casehop occupies no more than 16 Mb
layer 2 (see again Table 1V). We model our lookupndrow needs 256 Kb (using 4-byte pointers) by Fact 1.
scheme by these two layers. We begin by focusing on tiikis is actually a pessimistic estimate, since we only
lookup table for layer 1. (The lookup table for layer keep the sub-tries that ameot equivalent each other.
depends on the implementation chosen as we shall s&ghat we can experimentally observe is that our choice
We expand the upper part of the DAG in Fig. 3 théor representing layer 1 (which was data-driven) pays
corresponds to the first 16 levels into a complete binabyck in terms of space occupancy when compared to
trie with 216 leaves. The lower part of the DAG is a seCDG.
of sub-tries of height at most 8, as previously mentioned.In order to have a fair comparison with our scheme,
Using the definition of equivalence, we compute thee must add the space taken by the lookup table adopted
sequence of 256 next hops obtained by each such sfds-layer 2. We report in Table V the figures for several
trie. We obtain a two-dimensional table for layer 1 ashoices with router west.attcanada (see Section 1lI-A),
follows. where we compare several methods for storing the pre-
hop: This is the two-dimensional array éfx 256 next fixes in layer 2: CDG, array with binary searctyway
hops, wherey is the number of non-equivalent sub-triesearch (witht = 8 and k = 2n wheren is the number
of height at most 8 on level 16 of the DAG, and eacbf prefixes), binary tries, and hybrid tries in which the
such sub-trie is represented by its sequencg®ef 256 first three levels are indexed by individual bytes and the
next hopswithout RLE compression; next 8 levels (at most) are indexed by individual bits.
row: This is the array of2!6 entries mapping the Indeed, a lookup in layer 2 surely matches at least the
first 16 bits of IP addresses to the suitable ronwhep. first 24 bits by construction. Lookup times measure the
(Equivalently, they represent the children pointers @fumber of microseconds for running 100,000 lookups.
DAG nodes on level 16.) We computed similar tables for other snapshots, as it
For example, with reference to layer 1 in Table IMturns out that hybrid tries are the best trade-off between
we obtain the lookup table shown in Fig. 4. Here, wepace and lookup time. Choosing hybrid tries for storing
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Space occupancy of our scheme scales linearly with table

x-axis reports the 365 daily snapshots of year 2003 and the y-agige. The x-axis reports the number of prefixes and the y-axis the
the occupied space in bytes. number of kilobytes taken. Plotted points are bounded by the two
linear functionsf(n) = 9n andg(n) = 14n.

prefixes in layer 2, we report in Table VI the space
improvement with respect to CDG for the 12 bench- We also computed statistics for all daily snapshots of
mark tables listed in Section 1I-A. As we can see, th&003 of RIPE NCC (see Section II-A). The total size of
column corresponding to our scheme gives a quite stablér lookup table (using a hybrid trie for layer 2) is in
occupancy in space with respect to the routing table sithe range[7n ... 16n], thus confirming the linearity of
(#prefixes). This is better highlighted if we consider thgpace even in this case.
entire year 2003 of RIPE NCC, with the results for our At this point, we may wonder whether a more so-
scheme being plotted on the bottom of Figure 5. phisticated technique can better exploit the properties
The net result for our scheme is a lookup table who$é the DAG in Fig. 3. For example, we could consider
space occupancy scales linearly with the number of pigore cutlines and adaptive expansion of sub-tries [1].
fixes. (Clearly, layer 1 alone scales as well; moreover, hile we do not claim this as a general rule, we believe
maximum size is 16Mb.) Fig. 6 illustrates this behavidhat further improvement of the space occupancy of
for the available monthly snapshots of RIPE NNC, froaur scheme can significantly reduce the performance
October 1999 to April 2004, with a number of prefixesf lookup and update operations. As it becomes clear
ranging from 65841 (yieldingy = 1404) to 138201 later, we want to easily update the data structure while
(vielding & = 3241). As can be noted, layer 1 has @uaranteeing very fast lookup operations. Our scheme
size ranging in[9n...14n] bytes for n prefixes. For is simple, very fast and keeps the space reasonable
the sake of comparison, a straightforward storage @fithough not at a minimum). Simplicity and efficiency
these prefixes alone in a routing table would reqéite are the major features of our approach. We give three
bytes. In particular, each prefix requires a 4-byte word
of memory; its prefix length and its next hop need one

| router | #prefixes| CDG (Kb) | ours (Kb) |

byte each. aads 32505 3706 1084
att 121711 2188 1822

lookup Kb east.attcanada 127561 16418 1661

u funet 41328 666 540

time total | layer 1| layer 2 mae-west 71319 4643 1290

CDG 7012 2022 | 1521 501 oregon-01 118190 9897 1596
Binary Search|| 5221 | 1556 | 1521 | 35 °fe%°r|‘|'03 12;?32 gg;g Zégg
K Partition 5274 || 1556 | 1521 | 35 g;‘; € 17766 5745 g
N-Paanh 5211 1608 | 1521 87 telstra 104096 8896 1490
Binary Trie 5758 1649 | 1521 128 telus 126687 11390 1724
Hybrid Trie 5297 1649 | 1521 128 west.attcanada 127576 16749 1664

TABLE V TABLE VI



illustrative scenarios for implementing it; more are podayer 2 as before. Ultimately we just increase the number
sible by varying the lookup scheme adopted for layer 8f memory accesses to 3 and require the computation
The first implementation uses SRAM with a uniproef two hash functions. As a result, we expect that our
cessor, which is also the basis for our experiments (sinoethod is competitive for IPv6 address lookup also, but
it can be easily set up). We use hybrid tries for storinge need more data to assess this rigorously.
the long prefixes in layer 2. The size of our scheme
for layer 1 is comp_arable to the cur.rent size of caches lIl. PERFORMING LOOKUPS
(=~ 1-2Mb) according to our experiments. A random
lookup accesses the table for layer 1 with a nearIyThe improved space bounds described in Section Il
99.8% hit ratio, so that branch prediction works well fofakes our scheme more stable to use with respect
testing if lookup must go on querying layer 2. We repoff CDG. What about lookup time in IPv4? We recall
experimental data on this implementation in Section Iifhat CDG requires 3 accesses in the worst case. We
The second implementation uses a bi-processor. ctignificantly improve this performance. We require just
processor's cache holds layer 1 (the master), whilwo accesses plus an access to layer 2, the latter with
the other processor’s cache holds the hybrid trie f¥gY low hit ratio (as we show next). As a result, our
layer 2 (the slave). Lookups are in parallel but the slaf@ethod is approximately 30% faster than CDG.
processor can be interrupted when the master processdiS Previously mentioned, the lookup scheme is simple
succeeds (which happens in the majority of cases). and requires trivial logic to be implemented in hardware.
The third implementation is challenging as it is purelfSSUme that, for any given IP address= z;.x9.73.24,
hardware with a minimal requirement for logic. We stor@€ have the variabléx = ;.2 storing the first 16 bits
row into on-chip SRAM anchop into off-chip SRAM. of z and rx = x3.x4 storing the last 16 bits, so that
We can preallocate the maximum size of both by Fact .= 1x.rx. We use the right shift operator arx to get
We suggest using TCAM for layer 2, typically storing &Yt€ 3 and to perform a lookup. If we get the dummy
few long prefixes (less than 15% in our data set). TH&@/ue 255 in layer 1, we also need to perform a lookup
expected size of the TCAM can be easily computed By layer 2.
performing statistics on the table prefixes longer than @define DUMMY 255
equal to 24 bits. Again lookup is in parallel and caii ( (h1 = hop[ row[lx], x>>8 ]) != DUMMY )
be implemented with negligible extra logic to select the, €™M hL; _
. . return lookup_layer2( Ix.rx );
output from TCAMs when the next hop in layer 1 is a
dummy hop (255 with our data). We achieve one addressVe measure the running time of our method and of
lookup per clock cycle in this way. CDG on the daily snapshots of RIPE NCC for the year
2003. We employ the synthetic traffic data for each
) individual snapshot as explained in Section II-A. As
E. Scaling to IPv6 it can be noted in Fig. 7, our lookups are definitively
Our solution has good chances to scale to IP¥8ster than those in CDG by 30%. This is consistent with
addressing. Although there is not so much availablee fact that we reduce the number of memory accesses
data, some downloadable routing tables are publishedfiom 3 to 2.
http://net-stats.ipv6.cselt.it/bgp . Here It turns out that the role played by the data structures
the relevant address type is global unicast. The first 8% layer 2 is rather limited in our data set, except for
bits are the most important ones for backbone routintje single case that we discuss next. We report the
as the remaining 64 bits are for specifying an interfaexperimental data in Table VII for the 12 benchmarks
(e.g. a MAC address) where routing is mainly an intrandescribed in Section II-A. We use both random and
task. We also observe here the middle-class effect synthetic data. For random data, the figures in italic
a different scale. For our table, we have two cutlineorrespond to random data employed in the experiments
at 24 and 48 bits ando prefixes are shorter than 240f [9], [13]. The columns hit-2 count how many hits our
We can blend our scheme and CDG by introducinglaokup made in layer 2. The other columns measure the
new arraycol and reducing the number of columns imunning time in microseconds for 100,000 lookups.
hop with RLE in layer 1. Prefixes longer than 48 are We observe that the hit ratio for layer 2 is very low, so
stored in layer 2. For an address lookup, we hash theanch prediction in the if-statement works by returning
first 24 bits to a suitable entry afow and the next 24 the next hophi of layer 1. As a result, our scheme
bits to a suitable entry ofol, which points tohop. If essentially requires two memory accesses for a lookup.
the returned hop is a dummy, we perform the lookup MNote that, contrary to the rest of the snapshots in our data



120000

efficiently handle the updates of the lookup table when
announcements and withdrawals of routes arrives on the
fly. We do not need to rebuild the lookup table from
scratch. Instead, we combine the best features of fast
lookup using arrays with the flexibility of dynamically

N linked data structures while avoiding their drawbacks
eoeo T . 1 (rebuilding and slow lookup time, respectively).

We describe how to use our method (see Section II-
D) by assuming that some reasonably efficient method
has been adopted for layer 2 (e.g., tries, multi-level
hashing, TCAMs, etc.). Again, we base our method
on real data analysis to show that the great majority
of updates involves layer 1, consistent with what was
observed in the middle-class effect. We also make our

Fig. 7. Number of microseconds (on the y-axis) required by 1 millio-heme more robust b rovidina a aood. exact upper
lookups in CDG (top) and in our scheme (bottom) using syntheg y P gag : PP

tic . .
traffic. The x-axis reports the 365 daily snapshots of RIPE NCC 200‘%9“”0_' on the number of entries changed in the lookup
table in the worst case.

As described in Section II-D, we emplaéyp androw

set, oregon-01 performs badly with respect to our schei§é layer 1. It is crucial to observe thabp is stored in
on the random data used in [9]. (On the other hand,'@W-major order. Since we adopt the maximum number
performs equally well with random data generated if columns, 256, the only admissible size changedp
us.) Here is a clear example showing that the choiteto add or remove rows. Performing this change on
of a hybrid trie as lookup mechanism in layer 2 ighe columns would result in a disaster, as the whole
not enough powerful. Indeed, there are many prefixegp would need to be re-allocated dynamically, which
of length between 28-32 in oregon-01, and lookups §@N have a cost analogous to that of rebuilding. Here
layer 2 perform long matches, which is painful for tridgs why we opt for keeping all the 256 columns. We
searching. observe experimentally that using RLE on runs of equal
If we use CDG for layer 2, we can get an improvelext hops would reduce the number of columns by a
ment. This observation shows that the seemingly bAgaligible value at the price of reconstruction. So in this
performance of our |00kup scheme on Oregon_omds case, we prefer to have fast Update and waste a bit of
due to layer 1 (which is quite stable and compact), b&pace. This also guarantees a high level of concurrent
rather stems from layer 2. As we remarked before, #fCess to our lookup table during its lifetime.
all other snapshots we observed a limited impact on theWe assume (realistically speaking) that the prefixes in
overall performance by the lookup method adopted f@ute announcements and withdrawals are of length at
layer 2. Nevertheless, this limited impact appears not i@ast 8. (They can be shorter in case of heavy network
be the case for the snapshot oregon-01.
A similar situation may occur if some malicious

CDG tr

100000 1

80000

40000 1

20000 - 1

0 L L L L L L L
0 50 100 150 200 250 300 350

routing uses addresses that access layer 2 very often.|\Aiter random synthetic
observe that the cache can adapt to this skewed access 1(C)9D§6| 509“; | ;";326 25% | 401“(52 | ;’;24
nicely since the number of routes in layer 2 is limite 2ads =6 15903 5463 T 7452 2775 4820
(see Section 1I-D) and most of the data structure for 12605 | 7351 15 || 7872 | 4941 16
layer 2 is resident in the cache. To alleviate this problemeast.attcanada| 15096 | 8429 | 3220 || 9164 | 5450 | 3116
we exploit the fact that we definitively match the first 24 funet t %ig g‘g‘% 23%% ?222 421;22 24%71

. . . mae-wes
ad_dr_ess b.ItS in layer 2. We suggest using some a cachgr-egon_01 2740 | 9933 | 11693 || 7265 | 6654 | 10651
efficient trie for layer 2 (see [17] for example). oregon-03 14262 | 9529 | 3565 || 8790 | 6023 | 3525
We note that we obtain good performance in all othepacbell 6126 | 5078 | 3899 || 6584 | 4233 | 3458
I P paix 6306 | 5522 | 9683 | 6934 | 4682 | 8703
cases with just a hybrid trie on layer 2. telstra 8468 | 7544 | 3899 | 7966 | 5317 | 3690
telus 14011 | 8177 | 2095 | 8630 | 5279 | 2228
IV. PERFORMING UPDATES west.attcanada) 15071 | 8353 | 3277 || 9167 | 5350 | 3050
We now describe one of the main effects of our TABLE VII

simplification of the lookup scheme. We show how to
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0.7

layer 1. Recall thaB < [, < 32 by our assumptions.
We distinguish among three main cases for describing
the worst-case effect of this insertion @ow and hop,

0.6

0s | 1 llustrating them by using the example of layer 1 in
Table IV and its associated arraysw andhop shown in
o4y 1 Fig. 4. (We will discuss how to determine which entries

change in Section IV-D.)

1) Casel, < 16: Sincel, > 8, we have to change
ozl . . i no more thark56 entries inrow. However, each of them
o could change up t@56 entries inhop. The worst case is
therefore that of changings6 + 216 entries. In practice,

03 -

4 +
L .
0.1 N e et o

St - **f” ++%+++ ot + + . +++MH+ i ++ {* +++++++:+ . ;
;;;;}xﬁﬁfm; ) %ﬁwﬁgﬁwgﬂyg@wgj‘xg:ﬁ»ﬂ: w o the number of entries is much smaller. In our example,
T PR i SN #F T s I . H 1
% 50 100 150 200 250 300 350 if we announce route = 192.0.0.0 with prefix length

l, = 8 and next hoph, = 6, we change the entries
Fig. 8. On the y-axis, percentage of daily updates (less than 0.74) r,y1192.0...192.255] exceptrow[192.168]. All of
involving layer 2 for RIPE NCC. The x-axis reports the 365 dall)Ehem point to a new row imop that is made u f all
shapshots of year 2003. p pora

6s. Note that we cannot create many such rows, as the

number of distinct hop values is limited (to 127 in our
failures, but then updating the routing table is a min@ase). In the row ohop pointed to byrow[192.168], we
problem.) We also assume that there are at most lIZplace its right half 06s with 6s. This is a situation that
distinct next hop values in layer 1. We reserve the mazan be replicated over many rows, and that may cause
significant bit in each entry ohop to mark it as a the worst-case behavior, which we can bound as above.
dummy. (Note that we do not use the dummy value 2) Casel6 < [, < 24: This is the most frequent case
of 255 anymore as in Section 1I-D.) Masking this biaiccording to the middle-class effect. We can change one
yields the correct next hop value. If more than 127 valuestry of row to point from one row ofhop to another,
are needed, we add 32 bytes at the end of each reince the insertion op needs to change some entries
of hop to storing these mark bits. If more than 256 nexif the row previously pointed in that entry ebw. We
hops are needed, we simply allocate two bytes per entngy need to add a new row when none of the existing

of row. ones match this change. In the worst case, we change no
more thanl +256 entries. Continuing our example, if we
A. Further data analysis announce route = 192.168.128, [, = 20, andh, =7,

We perform data analysis on the update traces fOF modify the row ofhop pointed by row[192.168],

RIPE NCC. We collect the huge number of all th&? that the 16 entries starting from positib28 change

; . m 6s to 7s. Note that we do not need to create a
announcements and withdrawals available for year 20n W row as there is onlv one entrv pointing. We should
(see Section 1I-A). We report in Fig.8 the percentage y yp 9.

daily updates involving layer 2. Note that the maximur?perefore know .hOW many entries irow point & given
row of hop to this end.

percentage is less then 0.7%, with almost all valuesg) Casel. > 24: We can change one entry io
below 0.1%. This confirms once again the middle-class p ' g Y trow

effect that we observed on routing tables in Section II- ned grr;zt'iglrlfp(;f h;wr?;/;r, rt:v(\j Ii?htter ?sand%:cysi)(/e;ail:lse
motivating our choice to build layer 1 on the first 24 bits. °P

C case 2. Continuing our example, if we announce route
Therefore, we suggest to use a well-tuned trie in layer Z, i
= 192.168.128.12, [, = 26, and h, = 8, we just

as its update cost does not significantly mflgence theave to change entry 128 in the row lep pointed by

overall performance of announcements and withdrawals

in a router. row[192.168]. I'ts yglue ch_anges frorfi to 128 + 7 (we

set the most significant bit to 1 to mark it as a dummy),

and we must insemt, [,,, hp into layer 2. Note that using

255 as a dummy value would also cause an insertion into
We show how to efficiently process announcementsyer 2 0f192.168.128.12/24 with next hop7. This is a

and withdrawals that are produced during the executiproblem since we can change many entries in case 1, and

of the border gateway protocol (BGP). When an amhis change can reflect on layer 2 as well. Our solution

nouncements arrives, we have to insert a certain pgefixf using the most significant bit is simple since we do

with its associated prefix length and next hoph,, into

B. Handling announcements and withdrawals
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not need to insert the first 24 bits of longer prefixes The net result of the case analysis discussed so far
into layer 2 as previously illustrated in Table IV. Thids that updates are of bounded cost in layer 1, even in
guarantees that an update falling into cases 1-2 does theat worst case. This cost scales well with the number of
propagate to layer 2 as a side effect. updates and prefixes stored in layer 1.

Since we adopt a different encoding for dummy val- Fact 2: In the worst case, the announcement or with-
ues, we need to make a slight change to the Yookdpawal of an IPv4 route changes at most 256 entries

procedure. in row and at most2'¢ entries inhop in case 1. The
zge?ne LASBQOS%OTO HosT o number of changed entries ihop becomes256 in
# Ee|!ne((h1 = hop[ rowi], no>8 ]) & MSBIT) ) cases 2 and 3. In all cases, the empirical average number
return hi; of changed entries is nearly 1.
if ( (h2 = lookup_layer2( Ix.rx )) !'= NO_ROUTE_TO_HOST )
return h2;

return hl & "MSBIT; C. Concurrent access

If a lookup in layer 2 returns no-route-to-host, then we We have seen that, although rare, an update may
must return the next hop value (with its most significarthange thousands of entries. Should we stop performing
bit cleaned) previously computed in layer 1. Although tbokups meanwhile? Fortunately it is not so, as concur-
may appear that we are harming the performance of et access is possible. It suffices that when a row is
original lookup algorithm in Section Ill, we observe thagreated irhop, the pointer inrow is changed. Then, the
the hit ratio for the first if-statement is very high andow is correctly filled. In this way, any lookup accesses
determines the real lookup cost, which stays unchangsg entry ofhop either before or after the update, but not
according to the experimental evaluation discussed daring it! Concurrent access is possible in limited form
Section III. also among updates, if they work on different rows of

Withdrawals have an effect onow and hop simi- hop. We can safely guarantee the lookup functionality of
lar to announcements, except that we have to handigr scheme while updating; so the cost of the update can
“hidden” prefixes. When we delete a prefix, we shoulde spread among a sequence of lookups without freezing
find the “parent” of that prefix and propagate its nexhe router for this reason (except for memory contention
hop downward to replace that of the deleted prefix. Fdue to simultaneous access).
example, starting from Fig. 4, the withdrawal of route

192.168.0.0/18 from layer 1 in Table IV causes thep axiliary data structures for dynamic lookup table

propagation of the next hop 2 (in place of 3), since it i i ) i i
associated with the shorter prefi®2.168.0.0/17. We need to identify which entries change in arrays
row and hop in order to handle announcements and

As a result we add or remove one row at most Iﬁ'thd s Th | ibilities for this. W
hop. Removed rows are linked in a free list that can pa/narawais. 1nere are several possibilities for this. Ve
sume that the bookkeeping information is maintained

reused for adding rows. This does not change the lookf ) .
us Ng rows. THis S g elsewhere (e.g., see [2]) and does not interfere with the

procedure and its cost. caching and prefetching of lookup datazdbw andhop.
Since the main cost is given by the number of entria§e propose one solution that seems reasonable to us. It
changed inrow and hop, we computed statistics tomakes use of a counter for each rowhop to count how
account for this cost, classifying it according to cases Inany entries ofrow point to it. It also uses a hashing
3 (both for announcements and withdrawals). table for detecting equivalent sub-tries of height at most 8
We processed the peak of Oct. 25-26, 2003, in rouigt level 16, as they give rise to equal rowshiop. We
RIPE NCC. Table VIII shows that approximately 99.3%ropose to use fingerprints as hash functions, as they
of the updates fall into case 2. Roughly half of thersan be incrementally recomputed when only few entries
involve a prefix length,, = 24, so they change just onechange in a row.
entry inhop. Actually, the average number of changed We also need auxiliary data structures for quickly lo-
entries inrow and hop is nearly 1. For case 1, thecating “hidden” prefixes. For example, in Table IV, prefix
most expensive one, the variance is high for a small

number of updates while the rest of updates does not :
. date [ #announce| #withdraw || case 1] case 2 | case 3|

han ny row . On .25, 14 g
change any 9 Ohop. O QCI 5, just 1495 update 10-25-04]] 20459780 1397871 0.68% | 99.31% | 0.01%
changed entriesow and hop; on Oct. 26, there were 10-26-04 [ 11538757 1449371 0.67% | 99.30% | 0.03%

1889. These few updates changed between 100 and 1000
entries; we found a single example in which there were TABLE VIII
20,985 changed entries, approaching the worst case.




12

192.168.0.0/17 is hidden by192.168.0.0/18 since our scheme does not require bit manipulation and
and 192.168.64.0/18 . However, if we with- hashing and makes two plain memory accesses most of
draw 192.168.0.0/18 , then we must activatethe time.

192.168.0.0/17 and propagate its next hop. Another
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